B1: Cho a,b,c>0; a+b+c=3. CM: a5+b5+c5+1/a+1/b+1/c > hoặc = 6
Cho c cắt a tại A, c cắt b tại B
góc B1 + góc B2 +A1=3000
góc B1= 2B2
Hỏi a//b?
b1: cho 1/c=1/2*(1/a+1/b ) với a,b,c khác 0 và b khác c . CMR: a/b = a-c/ c-b
Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath
tại sao con cò lại bé bé
cho hình vẽ. biết Â1 =72^0 , B2=2/3 B1. c/minh a//b
Trong hình bên, cho biết A1=B3. Chứng minh rằng:
a/A4=B2
b/A1=B1; A2=B2
c/A2+B1=\(^{180^0}\); A3+B4=\(^{180^0}\)
cho phương trình x^2+bx+c=0 và x^2+b1x+c1=0 với b;c;b1;c1 thuộc Z sao cho (b-b1)^2+(c-c1)^2>0 chúng mình nếu cả 2 có 1 nghiệm chứng thí nghiệm thứ 2 là 2 số nguyên phân biệt
Chứng minh bằng phản chứng:
a) a, b, c thuộc ( 0; 1). CMR có ít nhất 1 bất đẳng thức sai:
a(1- b) > 1/4 ; b( 1- c) > 1/4 ; c(1- a) > 1/4
b) Cho: x^2 + x(a1) +b1=0 ;
x^2 + x(a2) + b2=0 . Thỏa mãn (a1)(a2) lớn hơn hoặc bằng ( b1 + b2)
b CMR: ít nhất 1 phương trình có nghiệm.
chữ " b" mk ghi ở phần b) trước "CMR " là gõ nhầm đấy, ko liên quan j đến bài toán đâu !!
B1: cho a+b+c=0 với M=a.(a+b)(a+c);N=b.(b+c)(b+a);P=c.(c+a)(c+b)..CMR:M=N=P
B2:cho a+b+c=2P CMR:2pc+b2+c2 - a2 = 4p (P-a)
B1: Cho x,y > 0 : x+y=1 . Tìm GTNN của P = 1/x^3+y^3 + 1/xy
B2 : Cho a,b,c > 0 : 1/a+1 + 1/b+1 + 1/c+1 = 2 . cmr : 1/a + 1/b + 1/c >= 4. (a+b+c)
Các bạn giải nhanh nha rùi mk tick cho
B1: Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)}+\frac{1}{xy}\)
\(=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{3}{3xy}\)
\(=\frac{1}{1-3xy}+\frac{\sqrt{3^2}}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=\left(1+\sqrt{3}\right)^2\)
Trong không gian Oxyz, cho hai vector a → = a 1 , a 2 , a 3 , b → = b 1 , b 2 , b 3 khác 0 → . Tích có hướng của a → và b → là c → . Câu nào sau đây đúng?
A. c → = a 2 b 3 - a 3 b 2 , a 3 b 1 - a 1 b 3 , a 1 b 2 - a 2 b 1
B. c → = a 1 b 3 - a 2 b 1 , a 2 b 3 - a 3 b 2 , a 3 b 1 - a 1 b 3
C. c → = a 1 b 3 - a 3 b 1 , a 2 b 2 - a 1 b 2 , a 3 b 2 - a 2 b 3
D. c → = a 3 b 1 - a 1 b 3 , a 1 b 2 - a 2 b 1 , a 2 b 3 - a 3 b 1