1) Cho A= \(\frac{a\sqrt{a}}{\sqrt{a}-1}+\frac{1}{1-\sqrt{a}}\)
với a ≥ 0 ; a ≠ 1
a) Rút gọn A
b) Tính Giá trị biểu thức a = \(\frac{9}{4}\)
C/Minh đẳng thức:
a) \(\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{2}{a-1}\) (với a>0, b>0, a≠b)
b)\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\) (với a>0, b>0,a≠b)
c) \(\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}=\frac{a+9}{a-9}\) (với a≥0, b≥0,a≠9)
Rút gọn:
A= (\(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\)). \(\frac{\sqrt{x}+1}{\sqrt{x}}\)với x>0 và x\(\ne1\)
B= (\(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\)) : \(\frac{\sqrt{x}+1}{x^2-x}\)với x>0 và x\(\ne1\)
C= ( \(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\)) : \(\frac{1}{\sqrt{a}.\left(\sqrt{a}-1\right)}\)với a>0 và a \(\ne1\)
D= (\(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : \(\frac{2.\left(x-2\sqrt{x}+1\right)}{x-1}\)với x>0 và x\(\ne1\)
E= ( \(\frac{a\sqrt{a}+1}{a-\sqrt{a}-2}+\frac{a}{2\sqrt{a}-a}\)) :\(\frac{1-\sqrt{a}}{2-\sqrt{a}}\)với a>0, a\(\ne4\),a\(\ne1\) F= ( \(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\)): (\(1+\frac{\sqrt{a}}{a+1}\)) với a>0 giúp mình vs mình tick cho nhiều lắm ạ!!! Mình đang cần gấp mn ơi!?!Chứng minh các biểu thức sau không phụ thuộc vào biến:
a) A = \(\frac{1}{x}.\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}+\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\right)\) với x>1
b) B = \(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) với x>= 0
c) C = \(\frac{\sqrt{a^3}+a}{a^2+\sqrt{a^5}}.\left(\frac{b^2}{a-\sqrt{a^2-b^2}}+\frac{b^2}{a+\sqrt{a^2-b^2}}\right)\) với a>0 và |a| > |b|
d) D = \(\frac{a+b\sqrt{a}}{b-a}.\sqrt{\frac{ab+a^2-2\sqrt{a^3b}}{b^2+2b\sqrt{a}+a}}:\frac{a}{\sqrt{a}+\sqrt{b}}\) với b>a>0
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
Rút gọn các biểu thức
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0)
b) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0; a ≠ b)
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\) với a,b > 0
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)
b) Giống câu a ?
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)
\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)
\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)
\(=\sqrt{ab}\)
Chứng minh rằng :
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+3}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\) (với a \(\ge\)0)
xét VT = \(\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}\) + \(\frac{\sqrt{a+1}-\sqrt{a+2}}{a+1-a+2}\) + \(\frac{\sqrt{a+2}-\sqrt{a+3}}{a+2-a-3}\)
= \(-\)\(\sqrt{a}+\sqrt{a+1}-\sqrt{a+1}+\sqrt{a+2}-\sqrt{a+2}+\sqrt{a+3}\)
= \(\sqrt{a+3}-\sqrt{a}\)
= \(\frac{\sqrt{a+3}^2-\sqrt{a}^2}{\sqrt{a+3}+\sqrt{a}}\)
=\(\frac{a+3-a}{\sqrt{a+3}+\sqrt{a}}\) =\(\frac{3}{\sqrt{a+3}\sqrt{a}}\) = VP \(\Rightarrow\) đpcm
Cho BT M=\(\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a}-1}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)với a>0, a khác 1
a) CMR: M>4
b) với những giá trị nào của a thì bt N=\(\frac{6}{M}\)nhận gt nguyên
a) \(M=\frac{a+1}{\sqrt{a}}+\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{a\sqrt{a}\left(\sqrt{a}-1\right)+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
\(M=\frac{a+1}{\sqrt{a}}+\frac{a+\sqrt{a}+1}{\sqrt{a}}+\frac{\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-a\sqrt{a}}\)
\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)}\)
\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{a-\sqrt{a}+1}{\sqrt{a}}\)
\(M=\frac{3a+3}{\sqrt{a}}\)
Xét \(M-4=\frac{3a+3}{\sqrt{a}}-4=\frac{3a-4\sqrt{a}+3}{\sqrt{a}}=\frac{3\left(\sqrt{a}-\frac{2}{3}\right)^2+\frac{5}{3}}{\sqrt{a}}>0\forall x\in TXĐ\)
Vậy \(M>4.\)
b) \(N=\frac{6}{M}=\frac{6}{\frac{3a+3}{\sqrt{a}}}=\frac{2\sqrt{a}}{a+1}=\frac{2}{\sqrt{a}+\frac{1}{\sqrt{a}}}\)
Để N nguyên thì \(\sqrt{a}+\frac{1}{\sqrt{a}}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Áp dụng bất đẳng thức Cosi cho hai số dương, ta có \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\Rightarrow\sqrt{a}+\frac{1}{\sqrt{a}}=2\)
\(\sqrt{a}+\frac{1}{\sqrt{a}}=2\Leftrightarrow a=1\) (Vô lý)
Vậy không tồn tại giá trị của a để N nguyên.
chị quản lí làm sai rùi
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
2.
a)
\(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\\ =\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(2+\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{2-\sqrt{a}}\right)\\ =\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\\ =2^2-\left(\sqrt{a}\right)^2\\ =4-a\)
b)
\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\\ =\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\frac{x-1}{\sqrt{x}}\cdot\frac{x}{\sqrt{x}+1}\\ =\sqrt{x}\left(\sqrt{x}-1\right)\\ =x-\sqrt{x}\)
c)
\(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\\ =\left(\frac{1-\sqrt{x^3}}{1-x}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}\\ =\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left[\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\right]^2}\\ =\left(\frac{1+\sqrt{x}+x+\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\\ =\frac{2x+2\sqrt{x}+1}{1+\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{2x+2\sqrt{x}+1}{\left(1+\sqrt{x}\right)^3}\)
1. (Ko viết lại đề nha :v)
a)
\(A=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\\ =\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\left(\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{x-1}\)
b) Để A đạt giá trị nguyên thì \(2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{-1;1;-2;2\right\}\\ \Leftrightarrow x\in\left\{0;2;-1;3\right\}\)
Vậy......
C/m biểu thức
a)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)=1\)(a,b>0,a\(\ne\)0
b)\(\frac{a-b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=a-b\left(a,b>0,a\ne b\right)\)
c)\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)=4-a\left(a>0,a\ne1\right)\)
d)\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)=\left(1-a\right)^2\left(a\ge0,a\ne1\right)\)
Giải giúp mk với. THứ 3 tuần sau là phải nộp rồi
rút gọn biểu thức:
\(Q=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(A=\left(1-\frac{2\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}+a+1}\right)\)với a lớn hơn hoặc bằng 0; a khác 1