Cho tam giác ABC .M là trung điểm của AB , N là trung điểm của AC. Chứng minh MN song song với BC; MN = 1/2. BC
Cho tam giác ABC .M là trung điểm của AB , N là trung điểm của AC. Chứng minh MN song song với BC; MN = 1/2. BC
Cho tam giác ABC. M là trung điểm của AB, từ M kẻ đường thẳng song song với BC cắt AC tại N, từ N kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh: BM = NI, N là trung điểm của AC, I là trung điểm của BC, MN = 1/2BC
(Tự vẽ hình)
Do BM//NI, MN//BI nên MNIB là hình bình hành
=> BM=IN (2 cạnh đối) (1)
Trong tam giác ABC, do M trung điểm AB, MN//BC => N trung điểm AC (2)
Do MA=MB,NA=NC nên MN là đường trung bình tam giác ABC => MN=1/2 BC (4)
CMTT, ta có I trung điểm BC (3)
Vậy ta có tất cả đpcm
Hình:
Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC. Chứng minh MN song song BC, MN = 1/2 BC
Cho tam giác ABC có N là trung điểm của AC qua n kẻ MN song song bc M thuộc cạnh AB n p song song AB p thuộc BC Chứng minh rằng tứ giác mnpb là hình bình hành và b là trung điểm bc Gọi H đối xứng với p qua m chứng minh HB song song AB Gọi I là trung điểm HB và O là trung điểm của AB và MN chứng minh ion thẳng hàng
a: Xét tứ giác BMNP có
BM//NP
NM//BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
N là trung điểm của CA
NP//AB
Do đó: P là trung điểm của BC
b: Sửa đề; HB//AP
Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
Cho tam giác ABC vuông tai A( AB<AC). Lấy M là trung điểm của BC. Từ M kẻ MN⊥AB, MP⊥AC ( N∈AB, P∈ AC)
a) Chứng minh tứ giác AMNP là hình chữ nhật.
b) Gọi E là trung điểm của MP. Chứng minh E là trung điểm của NC.
c) Đường thẳng đi qua C và song song với AM cắt MP tại G. Chứng minh tứ giác AMCG là hình thoi.
d) Kẻ AH⊥BC, Gọi O là giao của AM và NP. Tam giác ABC cần có điều kiện gì để HO// AB
Cho tam giác ABC vuông tai A( AB<AC). Lấy M là trung điểm của BC. Từ M kẻ MN⊥AB, MP⊥AC ( N∈AB, P∈ AC)
a) Chứng minh tứ giác AMNP là hình chữ nhật.
b) Gọi E là trung điểm của MP. Chứng minh E là trung điểm của NC.
c) Đường thẳng đi qua C và song song với AM cắt MP tại G. Chứng minh tứ giác AMCG là hình thoi.
d) Kẻ AH⊥BC, Gọi O là giao của AM và NP. Tam giác ABC cần có điều kiện gì để HO// AB
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)
=>ANMP là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MN//AC(cùng vuông góc với AB)
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MP//AB(cùng vuông góc với AC)
Do đó: P là trung điểm của AC
=>\(AP=PC=\dfrac{AC}{2}\)
mà MN=AP(ANMP là hình chữ nhật)
nên MN=AP=PC
Xét tứ giác CMNP có
CP//MN
CP=MN
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
mà E là trung điểm của MP
nên E là trung điểm của CN
c: Xét ΔPMA và ΔPGC có
\(\widehat{PCG}=\widehat{PAM}\)(hai góc so le trong, CG//AM)
PA=PC
\(\widehat{CPG}=\widehat{APM}\)(hai góc đối đỉnh)
Do đó: ΔPMA=ΔPGC
=>PG=PM
=>P là trung điểm của MG
Xét tứ giác AMCG có
P là trung điểm chung của AC và MG
=>AMCG là hình bình hành
Hình bình hành AMCG có AC\(\perp\)MG
nên AMCG là hình thoi
Cho tam giác ABC có AB =AC. Goi M;N lần lượt là trung điểm của AC và ABA) chứng minh tam giác ABM = tam giác CAN và tam giác BMC= tam giác CNBB)Lấy E;F sao cho M là trung điểm của BE , N LÀ trung điểm của CF Chứng minh A là trung điểm của EFC) chứng minh MN song song với BC và EF ( mình chưa học tam giác cân
Bạn vé hình giống của ((Me)) nhé ..
a, AB=AC (gt)
\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow\hept{\begin{cases}AN=AM\\CM=BN\end{cases}}\)
Xét 2 \(\Delta ABM\)và \(\Delta CAN\)có:
góc A chung
AB=AC(gt)
\(AN=AM\)( cmt)
\(\Rightarrow\Delta AMB=\Delta ACN\left(c.g.c\right)\)
Xét 2 \(\Delta BMC\)Và \(\Delta CNB\)Có:
Cạnh BC chung
Góc \(ABC\)= góc \(ACB\)
\(BN=CM\)(Cmt)
\(\Rightarrow\Delta NBC=\Delta MCB\left(c.g.c\right)\)
Từ A Kẻ \(AK\perp BC\)
\(\Rightarrow\)AK là đường phân giác của \(\Delta ABC\)(Vì \(\Delta ABC\)Là tam giác cân )
\(\Rightarrow NAK=KAC\)
gọI O là gia điểm của hai đường chéo CF và BE
Xét 2 \(\Delta ANO\)Và \(\Delta AMO\)Có :
Góc \(NAO\)= Góc \(MAO\)(Cmt)
Cạnh \(AO\)Chung
\(AN=AM\)(Theo câu a)
\(\Rightarrow\Delta ANO=\Delta AMO\left(C.g.c\right)\)
\(\Rightarrow ANO=AMO\)(Cặp góc tương ứng )
Ta có : góc \(FNA+ANO=180^O\)(Cặp góc kề bù )
góc \(EMA+AMO=180^O\)(Cặp góc kề bù )
Mà góc \(ANO=AMO\)(Cmt)
\(\Rightarrow EMA=FNA\)
vÌ \(\Delta ABC\)Cân và N ,M lần lượt là trung điểm của AB,AC
\(\Rightarrow CN=BM\)
\(\Rightarrow NF=ME\)
xÉT 2 \(\Delta AFN\)VÀ \(\Delta AEM\)có :
góc \(ANF=EMA\)(Cmt)
\(AM=AN\)(Cmt)
\(FN=ME\)(Cmt)
\(\Rightarrow\DeltaÀFN=\Delta AEM\left(C.g.c\right)\)
\(\Rightarrow AF=AE\)(CẶP CẠNH TƯƠNG ỨNG )
\(\Rightarrow A\)Là trung điểm của EF
Lấy I là gia điểm của NM và AK
Vì \(\Delta ABC\)là tam giác cân
\(\Rightarrow AK\)\(\perp MN\)
Ta có : \(\hept{\begin{cases}MN\perp AK\\BC\perp AK\end{cases}}\Rightarrow MN\)// \(BC\)(Tính chất từ vuông góc đến song song)
Cho tam giác ABC có AB =AC. Goi M;N lần lượt là trung điểm của AC và AB
A) chứng minh tam giác ABM = tam giác CAN và tam giác BMC= tam giác CNB
B)Lấy E;F sao cho M là trung điểm của BE , N LÀ trung điểm của CF Chứng minh A là trung điểm của EF
C) chứng minh MN song song với BC và EF
Cho tam giác ABC có AB =AC. Goi M;N lần lượt là trung điểm của AC và AB
A) chứng minh tam giác ABM = tam giác CAN và tam giác BMC= tam giác CNB
B)Lấy E;F sao cho M là trung điểm của BE , N LÀ trung điểm của CF Chứng minh A là trung điểm của EF
C) chứng minh MN song song với BC và EF