Cho tam giác ABC vuông tai A( AB<AC). Lấy M là trung điểm của BC. Từ M kẻ MN⊥AB, MP⊥AC ( N∈AB, P∈ AC)
a) Chứng minh tứ giác AMNP là hình chữ nhật.
b) Gọi E là trung điểm của MP. Chứng minh E là trung điểm của NC.
c) Đường thẳng đi qua C và song song với AM cắt MP tại G. Chứng minh tứ giác AMCG là hình thoi.
d) Kẻ AH⊥BC, Gọi O là giao của AM và NP. Tam giác ABC cần có điều kiện gì để HO// AB
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)
=>ANMP là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MN//AC(cùng vuông góc với AB)
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MP//AB(cùng vuông góc với AC)
Do đó: P là trung điểm của AC
=>\(AP=PC=\dfrac{AC}{2}\)
mà MN=AP(ANMP là hình chữ nhật)
nên MN=AP=PC
Xét tứ giác CMNP có
CP//MN
CP=MN
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
mà E là trung điểm của MP
nên E là trung điểm của CN
c: Xét ΔPMA và ΔPGC có
\(\widehat{PCG}=\widehat{PAM}\)(hai góc so le trong, CG//AM)
PA=PC
\(\widehat{CPG}=\widehat{APM}\)(hai góc đối đỉnh)
Do đó: ΔPMA=ΔPGC
=>PG=PM
=>P là trung điểm của MG
Xét tứ giác AMCG có
P là trung điểm chung của AC và MG
=>AMCG là hình bình hành
Hình bình hành AMCG có AC\(\perp\)MG
nên AMCG là hình thoi