Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lữ thị Xuân Nguyệt
Xem chi tiết
Bach Linh
Xem chi tiết
Nguyễn Xuân Toàn
8 tháng 11 2017 lúc 17:43

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Nguyễn Diệu Linh
Xem chi tiết
Cô Hoàng Huyền
10 tháng 11 2017 lúc 9:48

A B C M N D E

Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A.

Vậy thì trung tuyến AD chính là phân giác của góc \(\widehat{MAN}\)

Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A.

Vậy thì trung tuyến AE chính là phân giác của góc \(\widehat{BAC}\)

Từ đó ta có D, E cùng thuộc tia phân giác của góc A hay A, D, E thẳng hàng.

Lữ thị Xuân Nguyệt
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 23:14

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC
Do đó: MN là đường trung bình

=>MN//BC và MN=1/2BC

Oanh Nguyễn
Xem chi tiết
Trần Linh
Xem chi tiết
Huy Hoang
16 tháng 4 2020 lúc 21:46

A B C P D M N

\(\Delta ABC \) có : + M là trung điểm của AB

                          + P là trung điểm của BC

=> MP là đường TB

=> MP // AC

\(\Rightarrow\frac{MP}{AC}=\frac{BP}{BC}\)( định lí Talet ) ( 1 )

\(\Delta ABC\)có : + N là trung điểm củ AC 

                         + P là trung điểm của PC

=> NP là đường TB

=> NP // AB

\(\Rightarrow\frac{NP}{AB}=\frac{CP}{CB}\)( định lí Talet ) ( 2 )

Mà BP = CP ( P là trung điểm BC ) ( 3 )

Từ (1)(2)(3) => \(\frac{MP}{AC}=\frac{NP}{AB}\)

\(\Rightarrow\frac{PM}{PN}=\frac{AC}{AB}\Rightarrow\frac{DM}{DN}=\frac{PM}{PN}\)

Mà \(\frac{DM}{DN}=\frac{AC}{AB}\left(gt\right)\)

=> PD là đường phân giác \(\widehat{MPN}\)

Khách vãng lai đã xóa
Trần Linh
Xem chi tiết
noname
Xem chi tiết
Thảo
Xem chi tiết