Cho tam giác ABC, M, N lần lượt là trung điểm của AB và AC. CMR : MN // BC ; MN = \(\frac{1}{2}\) BC
Giúp tớ với ! Nguyễn Huy Tú
Cho tam giác ABC. Trên tia đối của các tia AB, AC lần lượt lấy các điểm M,N sao cho AM = AB ; AN = AC. Gọi I và K lần lượt là trung điểm của BC và MN. CMR :
a) MN = BC
b) tam giác AKN = tam giác AIC
c) A là trung điểm của IK
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Cho tam giác abc, ab=ac. Trên cạnh ab và ac lần lượt lấy 2 điểm m và n sao cho am=an. Gọi e và d lần lượt là trung điểm của mn và bc. Cmr: a d e thẳng hàng
Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A.
Vậy thì trung tuyến AD chính là phân giác của góc \(\widehat{MAN}\)
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Vậy thì trung tuyến AE chính là phân giác của góc \(\widehat{BAC}\)
Từ đó ta có D, E cùng thuộc tia phân giác của góc A hay A, D, E thẳng hàng.
Cho tam giác ABC, M, N, P lần lượt là trung điểm của AB, AC, BC. gọi I là giao điểm của AP và MN. CMR :IM =IN
cho tam giác ABC. Gọi M,N lần lượt là trung điểm của các cạnh AB, AC. CMR: MN//BC, MN=1/2BC
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC
Giải giúp mik vs ạ
Thank you ♥️
Cho tam giác ABC có AB = 12cm, AC = 16 cm, BC = 20 cm. 1. Tam giác ABC là tam giác gì? 2. Lấy M, N lần lượt trên AB, AC sao cho AM = 3cm, AN = 4cm. CMR: MN // BC 3. Gọi I là trung điểm BC. G là giao điểm của AI và MN. CMR: G là trung điểm MN
Cho tam giác ABC. Gọi M,N lần lượt là trung điểm của AB và AC. Trên MN lấy D sao cho (DM)/(DN)=(AC)/(AB). Nối D với trung điểm P của BC. CMR PD là tia phân giác của góc MPN
\(\Delta ABC \) có : + M là trung điểm của AB
+ P là trung điểm của BC
=> MP là đường TB
=> MP // AC
\(\Rightarrow\frac{MP}{AC}=\frac{BP}{BC}\)( định lí Talet ) ( 1 )
\(\Delta ABC\)có : + N là trung điểm củ AC
+ P là trung điểm của PC
=> NP là đường TB
=> NP // AB
\(\Rightarrow\frac{NP}{AB}=\frac{CP}{CB}\)( định lí Talet ) ( 2 )
Mà BP = CP ( P là trung điểm BC ) ( 3 )
Từ (1)(2)(3) => \(\frac{MP}{AC}=\frac{NP}{AB}\)
\(\Rightarrow\frac{PM}{PN}=\frac{AC}{AB}\Rightarrow\frac{DM}{DN}=\frac{PM}{PN}\)
Mà \(\frac{DM}{DN}=\frac{AC}{AB}\left(gt\right)\)
=> PD là đường phân giác \(\widehat{MPN}\)
Cho tam giác ABC. Gọi M,N lần lượt là trung điểm của AB và AC. Trên MN lấy D sao cho (DM)/(DN)=(AC)/(AB). Nối D với trung điểm P của BC. CMR PD là tia phân giác của góc MPN
Cho tam giác ABC vuông tại B , M là trung điểm của cạnh BC . Trên tia đối của tia MB lấy điểm N sao cho MN = MB a) CMR tam giác AMB = tam giác CMN b) CMR AB song song NC c) CMR AC = BN d) Gọi H , K lần lượt là trung điểm của AB và NC , CMR ba điểm H, M, K thẳng hàng
giúp minh với!
cho tam giác ABC gọi MN lần lượt là trung điểm AB của BA và BC CMR MN//AC và MN=1/2 BC