Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phan Ngọc Tú
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 11:48

A B C D F E M

Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a

=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)

=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ

=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF

Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)

Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)

Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)

\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)

hoang phuc
15 tháng 10 2016 lúc 11:04

chiu

tk nhe

xin do

bye

Tran Thanh Huyen
Xem chi tiết
Ngân Vũ
31 tháng 3 2016 lúc 20:23

bài của bạn gần giống bài của mình

Trần Sỹ Hùng
13 tháng 11 2018 lúc 20:32

ghen j đồng bào

Nguyễn thị thu Hương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2017 lúc 13:51

NgưSong
Xem chi tiết
Nguyễn Hoàng Tùng
6 tháng 12 2021 lúc 16:52

\(Ta\) \(có\) \(S_{ABCD}=6.6=36\left(cm^2\right)\)

\(S_{EFGH}=\dfrac{1}{2}S_{ABCD}=\dfrac{1}{2}.36=18\left(cm^2\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 10 2018 lúc 16:54

Tìm ảnh của từng điểm qua phép đối xứng trục AC: điểm I biến thành I; B thành D; G thành H.

Chọn đáp án C

Hoàng Trung Đức
Xem chi tiết
Quang Vinh
Xem chi tiết
Mạnh đặng đức
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2019 lúc 3:24

Đáp án D

là trung điểm cạnh đáy BC. Do SA = SB = SC = SD nên SO ⊥  (ABCD)

Từ đó ta chứng minh được 

Tính được

 

Suy ra