Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C' là trung điểm của SC và M là một điểm di động trên cạnh SAa. Mặt phẳng (P) di động luôn đi qua C'M và song song với BC
a) Xác định thiết diện (P) cắt hình chóp S.ABCD. Xác định vị trí điểm M để thiết diện là hình bình hành
b) Khi M di động trên cạnh SA, thì giao điểm của hai cạnh đối của thiết diện chạy trên đường nào ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang ( AD || BC, AD= 2BC ). Gọi M, N lần lượt là trung điểm SA và AB.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Chứng minh MN//(SBC)
c) Gọi O là giao điểm của AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (OMN)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. gọi M,N,P lần lượt là trung điểm của AD,CD,SB.
a) Tìm giao tuyến của (SAC) và (SBM). Tìm giao điểm I của SO và (MNP)
b) Xác định thiết diện của hình chóp S.ABCD cắt bởi (MNP)
Hình chóp SABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của cạnh SC, SD. Chứng minh MN//(SAB). Gọi mặt phẳng alpha là mặt phẳng chứa AM và song song với BD, mặt phẳng alpha cắt SB tại E. S1, S2 là kí hiệu cho diện tích của các tam giác SME và SBC. Tính tỉ số S1/S2
Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC) ?
b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN) ?
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN) ?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P theo thứ tự là trung điểm của các đoạn SB, SC, SA.
a) Tìm giao điểm giữa PN và (BDI), với I là trung điểm của NC
b) Tìm thiết diện hình chóp cắt bởi (CMP)
Cho hình chóp S.ABCD. Gọi E, F lần lượt là các điểm thuộc miền trong các tam giác SAB, SBC, SCD. Xác định thiết diện do mặt phẳng (EFG) cắt hình chóp ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB. Gọi M là trung điểm của các cạnh SB. a) Tìm giao tuyến của mặt phẳng (SAD) với mặt phẳng (SBC)? b) Tìm giao tuyến I của đường thẳng DM với (SAC)? c) Tìm thiết diện của mặt phẳng (MDC) với hình chóp S.ABCD?
Bài 5. Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB và AB = 2CD. Gọi E, F làn lượt là trung điểm của các cạnh SA, SB. a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD). b) Chứng minh rằng EF // (SCD). c) Chứng minh rằng DE // (SBC). d) Lấy điểm M thuộc cạnh SD. Gọi (P) đi là mặt phẳng qua M và song song với mặt phẳng (SAB). Tim giao tuyến của (P) và (SBC).