Cho hai tập hợp E = {x ∈ R: f(x) = 0}; F = { x ∈ R: g(x) = 0}; H = {x ∈ R : f(x).g(x) = 0}. Trong các mệnh đề sau, mệnh đề đúng là:
A. H = E ∪ F.
B. H = E ∩ F.
C. H = E \ F.
D. H = F \ E.
Cho hai tập hợp E={x∈R, f(x)=0}, F={x∈R, g(x)=0}. Tập hợp H={x∈R, f(x).g(x)=0}. Mệnh đề nào đúng và giải thích:
A. H= E hợp F
B. H= E giao F
C. H= E/F
D. H=F/E
Cho hai tập hợp E = {x ∈ R: f(x) = 0}; F = { x ∈ R: g(x) = 0}; H = {x ∈ R: f ( x ) g ( x ) = 0}. Trong các mệnh đề sau, mệnh đề đúng là:
A. H = E ∪ F.
B. H = E ∩ F.
C. H = E \ F.
D. H = F \ E.
Đáp án: C
f(x)/g(x) = 0 ⇔ f(x) = 0 và g(x) ≠ 0. Nghĩa là H là tập hợp bao gồm các phần tử thuộc E nhưng không thuộc F hay H = E \ F.
Cho hai tập hợp E = {x ∈ R: f(x) = 0}; F = {x ∈ R: g(x) = 0}; H = { x ∈ R: f(x)2 + g(x)2 = 0}. Trong các mệnh đề sau, mệnh đề đúng là
A. H = E ∪ F.
B. H = E ∩ F.
C. H = E \ F.
D. H = F \ E.
Đáp án: B
f(x)2 + g(x)2 = 0 ⇔ f(x) = 0 và g(x) = 0. Nghĩa là H là tập hợp bao gồm các phần tử vừa thuộc E vừa thuộc F hay H = E ∩ F
Cho hai tập hợp:
F={x € R/ |f(x)| + |g(x)|=0}.
G={x€R/ g(x)=0}.
Cho tập hợp
H ={x€R / |f(x)| + |g (x)|=0}. Xét câu nào sau đây đúng
A. H=FgiaoG
C. H=F\G
B. H = F U G.
D. H= G\F
giúp với
Cho hai đa thức f(x) và g(x). Xét các tập hợp A={x∈R, f(x)=0}, B={x∈R,g(x)=0}, C={x∈R,f(x)g(x)=0 } . Mệnh đề nào đúng và giải thích:
A. A hợp B
B. A giao B
C. A/B
D. B/A
Cho hai đa thức f(x) và g(x). Xét các tập hợp A={x∈R, f(x)=0}, B={x∈R,g(x)=0}, C={x∈R,f2(x)+g2(x)=0}. Mệnh đề nào đúng và giải thích:
A. C= A hợp B
B. C=A giao B
C. C=A/B
D. C=B/A
Cho 3 tập hợp:
`F={x in R` | `f(x)=0} ; G={x in R` | `f(x)=0} ; H={x in R` | `f(x)+g(x)=0}`
Mệnh đề nào đúng:
\(A.H=F\cap G\\ B.H=F\cup G\\ C.H=F\backslash G\\ D.H=G\backslash F\)
Cho tập hợp E={x∈R/1<=|2x-1|<=3};F=[a;a+2]. Tìm số thực a để E giao F khác 0
1<=|2x-1|<=3
\(\Leftrightarrow\left[{}\begin{matrix}1< =2x-1< =3\\-1>=2x-1>=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2< =2x< =4\\0>=2x>=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1< =x< =2\\-1< =x< =0\end{matrix}\right.\)
\(E=\left[1;2\right]\cup\left[-1;0\right]\)
Để F giao E khác rỗng thì \(\left[{}\begin{matrix}a>=-1\\a+2< =2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>=-1\\a< =0\end{matrix}\right.\)
Cho hai đa thức f(x) và g(x). Xét các tập hợp A={x∈R, f(x)=0}, B={x∈R,g(x)=0}, C={x∈R,\(\frac{f\left(x\right)}{g\left(x\right)}\)=0}. Mệnh đề nào đúng và giải thích:
A. C= A hợp B
B. C=A giao B
C. C=A/B
D. C=B/A