Cho tam giác ABC có A=60. Hai phân giác BD và CE (D thuộc Ac; E thuộc AB) cắt nhau tại M. CMR góc CMD= góc A
Cho tam giác ABC có góc A=60 độ .Kẻ tia phân giác BD,CE( E thuộc AB ;D thuộc AC)
BD và CE cắt nhau tại O. Tia phân giác của góc BOC cắt BC tại F.
Chứng minh rằng
a) OD=OE=OF
b)tam giác DEF là tam giác đều
cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). gọi O là giao điểm của BD và CE. chứng min
a) BD=CE
b) tam giác OEB= tam giác OCD
c) AO là tia phân giác của góc BAC ( lời giải chi tiết và hình vẽ )
Cho tam giác ABC có AB = AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB)
a) Chứng minh: BD=CE
b) Gọi O là giao điểm của BD và CE. Chứng minh tam giác OBE = tam giác OCD
c) Chứng minh AO là tia phân giác của góc BAC và AO vuông góc với BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
Cho tam giác ABC , có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC; E thuộc AB); gọi Ở là giao điểm của BD và CE. Chứng minh:
a, BD=CE
b, tam giác OEB=tam giác ODC
c, AO là tia phân giác của BAC
d,H là trung điểm của BC. Chứng minh A,O,H thẳng hàng.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\)
=>\(\widehat{OBE}=\widehat{OCD}\)
ΔABD=ΔACE
=>AD=AE
AE+EB=AB
AD+DC=AC
mà AE=AD và AB=AC
nên EB=DC
Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC
=>OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
d: Ta có: ΔABC cân tại A
mà AH làđường trung tuyến
nên AH là phân giác của góc BAC
mà AO là phân giác của góc BAC(cmt)
và AO,AH có điểm chung là A
nên A,O,H thẳng hàng
bài 1: cho tam giác ABC vuông tại A có BD là phân giác của góc ABC (D thuộc BC), Tính góc B và góc C biết BDC = 105 độ
Bài 2 : cho tam giác ABC có BD và CE là phân giác của góc B;C (D thuộc AC; E thuộc AB). Góc A=m*. BD cắt CE tại O. Tính góc BOC theo m*
Bài 4: Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính số đo góc IBC
Tự vẽ hình.
a) Ta có: \(AB^2+AC^2=8^2+6^2=100\); \(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
Theo định lý Pytago đảo \(\Rightarrow\Delta ABC\) vuông tại \(A\).
b) Xét tam giác \(IBC\). Theo định lý tổng 3 góc trong tam giác ta có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\\ \Rightarrow\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)\\ \Rightarrow\widehat{BIC}=180^0-\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\\ \Rightarrow\widehat{BIC}=180^0-\dfrac{1}{2}\left(180^0-\widehat{A}\right)\\ \Rightarrow\overrightarrow{BIC}=180^0-\dfrac{1}{2}\left(180^0-90^0\right)=135^0\)
Bài 4: Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính số đo góc IBC
a/ Có
\(\left\{{}\begin{matrix}AB^2+AC^2=36+64=100\\BC^2=100\end{matrix}\right.\)
=> \(AB^2+AC^2=BC^2\)
=> t/g ABC vuông tại A
b/ Có
\(\widehat{ABC}+\widehat{ACB}=90^o\)
=> \(\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}=45^o\)
=> \(\widehat{IBC}+\widehat{ICB}=45^o\) (do phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I)
=> \(\widehat{BIC}=180^o-45^o=135^o\)
cho tam giác ABC có góc A= 60. Vẽ tia phân giác BD và CE(D thuộc AC; E thuộc AB)cắt nhau tại O
a) Tính góc BOC.
b) Vẽ phân giác ngoài tại B và C cắt nhau tại I. Tính góc BIC.
a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)
=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)
BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)
CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)
=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)
\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)
=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)
b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)
Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)
=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)
=>\(\widehat{CBx}+\widehat{BCy}=240^o\)
BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)
CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)
=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)
\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)
=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)
Vậy ............................
Cho tam giác ABC có góc A = 60 độ .Gọi BD và CE lần lượt là các đường phân giác của góc Bva C (D thuộc AC ;E thuộc AC).So sánh độ dài DC +BE và độ dài cạnh BC ta có BE+ CD.......BC