cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB (D \(\in\) AC; E \(\in\) AB).
gọi O là giao điểm của BD và CE. Chứng minh:
a) BD =CE
b) Tam giác OBC là tam giác cân.
c) AO là tia phân giác của góc BAC.
Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB( E thuộc AB)
a) Chứng minh BD=CE
b) Gọi I là giao điểm của BD và CE. Chứng minh tam giác IBC cân
Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)
góc ABC = góc ACB ( cân tại A)
BC chung
==> BD=CE
b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên
góc BCE = góc DBC
--> IBC cân tại I
Cho tam giác ABC cân tại A (góc A nhọn) kẻ BD vuông góc với AC tại D,kẻ CE vuông góc AB tại E
TAM GIÁC ADE CÂN,DE SONG SONG BC,BD CẮT CE TẠI I,CHỨNG MINH IB=IC AI VUÔNG GÓC BC
a: Xét ΔABD vuông tại D vaf ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>AD=AE
b: Xét ΔABC có AD/AC=AE/AB
nên DE//BC
c: Xét ΔIBC có góc ICB=góc IBC
nên ΔIBC cân tại I
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>AI vuông góc BC
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC) và
CE vuông góc với AB (E thuộc AB).
a) Chứng minh: BD = CE.
b) Chứng minh: Tam giác AED cân.
c) Gọi I là giao điểm của BD và CE. Chứng minh: AI là phân giác của góc A và
AI vuông góc BC
Các bạn giúp mình với
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
Cho tam giác ABC có AM vuông góc với BC. Kẻ MD vuông góc với AB tại D. Kẻ ME vuông góc với AC tại E. Biết BD = CE, chứng minh tam giác ABC cân.
Cho tam giác ABC không vuông. Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E. Chứng minh BD + CE < AB + AC?
cho tam giác abc cân tại a( ab>ac) kẻ bd vuông góc với ac, d thuộc ac. ce vuông góc với ab, e thuộc ab. gọi h là giao điểm của bd và ce.
c) ah>hc
Cho tam giác ABC cân tại A có góc A nhọn. Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E. Gọi K là giao điểm của BD và CE. Chứng minh:
a) Tam giác BCE= Tam giác CBD
b) Tam giác BEK = Tam giác CDK
c) AK là phân giác của góc BAC
d) Ba điểm A, K, I thẳng hàng (với I là trung điểm của BC)
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔBEK vuông tại E và ΔCDK vuông tại D có
EB=DC
\(\widehat{EBK}=\widehat{DCK}\)
Do đó: ΔBEK=ΔCDK
c: Xét ΔBAK và ΔCAK có
BA=CA
AK chung
BK=CK
Do đó: ΔBAK=ΔCAK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
Cho tam giác ABC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Trên tia đối của tia BD, lấy điểm H sao cho BH = AC. Trên tia đối của tia CE, lấy điểm K sao cho CK = AB. Chứng minh tam giác ABC cân.
cho tam giác ABC vuông cân ở A ,kẻ BD vuông góc với AC , CE vuông góc AB ( D thuộc AC);. Gọi O là giao điểm của BD và CE
a) chứng minh : AD = AE
b) chứng minh : tam giác OBC cân
c) chứng minh : AO vuông góc với BC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
b: Ta có: \(\widehat{ABC}=\widehat{ABD}+\widehat{OBC}\)
\(\widehat{ACB}=\widehat{ACE}+\widehat{OCB}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
và \(\widehat{ABD}=\widehat{ACE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOCB cân tại O