Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tomori Nao
Xem chi tiết
Herera Scobion
18 tháng 3 2022 lúc 9:00

Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)

góc ABC = góc ACB ( cân tại A)

BC chung 

==> BD=CE

 

Herera Scobion
18 tháng 3 2022 lúc 9:01

b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên 

góc BCE = góc DBC

--> IBC cân tại I

21. Ngọc Như 6/2 Mai
Xem chi tiết
Sun Trần
15 tháng 3 2023 lúc 21:28

Có chỗ nào không hiểu thì hỏi b nhé

loading...

Duy Khánh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2023 lúc 13:31

a: Xét ΔABD vuông tại D vaf ΔACE vuông tại E có

AB=AC
góc BAD chung

=>ΔABD=ΔACE

=>AD=AE
b: Xét ΔABC có AD/AC=AE/AB

nên DE//BC

c: Xét ΔIBC có góc ICB=góc IBC

nên ΔIBC cân tại I

d: AB=AC
IB=IC

=>AI là trung trực của BC

=>AI vuông góc BC

Vũ Lê Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 1 2022 lúc 22:01

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

Nina Guthanh
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Thành họ Bùi
Xem chi tiết
Hoàng Quân Đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 2 2022 lúc 15:38

a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có 

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔBEC=ΔCDB

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

BD=CE

Do đó: ΔABD=ΔACE

Xét ΔBEK vuông tại E và ΔCDK vuông tại D có

EB=DC

\(\widehat{EBK}=\widehat{DCK}\)

Do đó: ΔBEK=ΔCDK

c: Xét ΔBAK và ΔCAK có 

BA=CA

AK chung

BK=CK

Do đó: ΔBAK=ΔCAK

Suy ra: \(\widehat{BAK}=\widehat{CAK}\)

hay AK là tia phân giác của góc BAC

Đào Bá Huy
Xem chi tiết
Đặng Thái Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 1 2022 lúc 19:59

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔADB=ΔAEC

Suy ra: AD=AE

b: Ta có: \(\widehat{ABC}=\widehat{ABD}+\widehat{OBC}\)

\(\widehat{ACB}=\widehat{ACE}+\widehat{OCB}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

và \(\widehat{ABD}=\widehat{ACE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOCB cân tại O