Cho Δ ABC có AB=AC. Kẻ BD vuông góc AC, CE vuông góc AB (D ϵ AC; E ϵ AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a) Δ ABD = Δ ACE
b) BD = CE
c) Δ AOE = Δ AOD
d) Δ OEB = Δ ODC
e) AO là tia phân giác của góc BAC
cho ΔABC có 3 góc nhọn. Kẻ BM vuông góc với AC ( M ϵ AC), kẻ CN vuông góc với AB (N ϵ AB). Trên tia đối của tia BM lấy D sao cho BD=AC. Trên tia đối của tia CN lấy E sao cho CE=AB. CMR:
a) ΔACE= ΔABD
b) AE vuông góc với AD
cho △ ABC cân tại A có góc A = 80 độ . trên cạnh BC lấy các điểm D và E sao cho BD = CE < 1/2 BC . kẻ DH vuông góc với AB và EK vuông góc với AC ( H ϵ AB , K ϵ AC ) . Gọi M là trung điểm của BC
a) tính số đo các góc B , góc C của △ ABC
b) chứng minh △ADE cân
c) chứng minh AH = AK
d) chứng minh 3 đường thẳng AM , DH và EK cắt nhau tại một điểm
Cho tam giác ABC có AB=AC(góc A<90 độ ).Kẻ BD vuông góc vowisAC(D thuộc AC).Kẻ CE vuông góc với AB(E thuộc AB).Chứng minh BD=CE
Xét \(\Delta\)ACE vuông tại E và \(\Delta\)ABD vuông tại D
có: AB = AC ( gt)
^A chung
=> \(\Delta\)ACE = \(\Delta\)ABD ( cạnh huyền - góc nhọn )
=> CE = BD
Cho tam giác ABC không vuông. Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E. Chứng minh BD + CE < AB + AC?
Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng BD // CE
Cho
ABC
có
, 90 BC
. Kẻ
BD
vuông góc với
AC
(
D AC
). Kẻ
CE
vuông
góc với
AB E AB
. Gọi
H
là giao điểm của
BD
và
CE
. Chứng minh:
180o
A DHE
.
Xét tứ giác AEHD có
góc AEH+góc ADH=180 độ
=>AEHD là tứ giác nội tiếp
=>góc A+góc DHE=180 độ
Cho tam giác ABC có AB > AC . Từ B, C lần lượt kẻ BD vuông góc với AC tại D , CE vuông góc với AB tại E . CMR : AB - AC > BD - CE
cho Δ ABC cân tại A (A<90o). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E.
a) CM: ΔADE cân
b) CM: DE // BC
c) Gọi I là giao điểm của BD và CE. CM: IB=IC
d) CM: AI vuông góc với BC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
Do đó; ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔiBC cân tại I
=>IB=IC
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>AI vuông góc với BC
Cho tam giác ABC có AB = AC. kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC,E thuộc AB). Gọi O là giao điểm của BD và CE. chứng minh : a) AD = EF b) tam giác ABD = tam giác ACE c) AO là tia phân giác của góc BAC
F ở đâu bạn ?
b, Xét tam giác ABD và tam giác ACE
^A _ chung
AB = AC
Vậy tam giác ABD = tam giác ACE (ch-gn)
c, Ta có BD ; CE lần lượt là đường cao
mà BD giao CE = O
=> O là trực tâm tam giác ABC
=> AO là đường cao thứ 3 trong tam giác
mà tam giác ABC cân tại A nên AO là đường cao
đồng thời là đường phân giác ^BAC