CHO TAM GIÁC ABC CÂN TẠI A. KẺ CÁC ĐƯỜNG CAO BH; CK. CHỨNG MINH:
A) CÁC TAM GIÁC BHC VÀ BKC BẰNG NHAU
B) AH=AK
C) TỨ GIÁC BKHC LÀ HÌNH THANG CÂN
CÁC BẠN GIÚP MÌNH LÀM BÀI NÀY NHÉ, THANKS MẤY BẠN!!!!
1) Tam giác ABC vuông tại A. Vẽ ở phía ngoài các tam giác ABD, ACE vuông cân tại A. Có AH là đường cao tam giác ABC, AH cắt DE tại K. CMR: K là trung điểm DE.
2) Cho tam giác cân ABC, M bất kì thuộc BC. Kẻ ME, MF vuông góc với AC, AB. Kẻ BH vuông góc AC. Chứng minh ME + MF = BH
cho tam giác ABC cân tại A kẻ đường cao BH và CK. cm tứ giác BKHC là hình thang cân
CMR:
+Xét tg vuông BKH và tg CHB ta có
Cạnh huyền BC chung (1)
\(^SABC=\frac{AB.CK}{2}=\frac{AC.BH}{2}\Rightarrow AB=AC\Rightarrow BH=CK\)
Từ (2) với (2) => tg = BKC tg= CHB (cạnh huyền và cạnh góc vuông tương ứng bằng nhau) BK = CH
Mà AB cân tại A AC=AK+BK=AH+CH=AK+CK=>tg AHK cân tại A
+Xét tg cân AKH có
^AKH =^AHK=(180^-BAC)(2)(3)
^ABC=(180-BAC)
Từ (3) (4) vậy
Có hai góc đồnng vị
Nên BKHC là hình thang vuông
cho tam giác ABC cân tại A .Gọi M là trung điểm của bc .Kẻ đường cao BP .từ M ,kẻ các đường thẳng MK và MH lần lượt vuông góc với AC và AB tại K và H
a, chứng minh tam giác ABM = tam giác ACM
b, chứng minh BH =CK
Bạn tự vẽ hình nhé hình này rất dễ thôi :v
a)Xét tam giác cân ABC có:AM là trung tuyến
`=>` AM là đường cao
`=>AM bot BC`
Xét tam giác ABM và tam giác ACM có:
`AM` chung
`hat{AMB}=hat{AMC}=90^o(CMT)`
`BM=MC`(do m là trung điểm)
`=>Delta ABM=Delta ACM(cgc)`
`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:
`BM=CM`(M là trung điểm)
`hat{ABC}=hat{ACB}`(do tam giác ABC cân)
`=>Delta BHM=Delta CKM`(ch-gn)
`=>BH=CK`
+ Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD
Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD
a: BC=13cm
\(AB=3\sqrt{13}\left(cm\right)\)
\(AC=2\sqrt{13}\left(cm\right)\)
Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH AC ( H AC); CK AB ( K AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.
Giúp mình với ạ, mik đang cần gấp
Ai giúp mik với mik đang cần gấp ạ
cho tam giác ABC cân tại A, kẻ đường trung tuyến AM
a) chứng minh tam giác AMB=tam giác AMC
b) Kẻ đường cao BH,CK.Chứng minh tam giác BKC= tam giác CHB
c)Chứng minh KH song song BC ?
Cho tam giác ABC vuông cân tại A,kẻ đường cao Mh, MK( H,K thuộc A,B)
chứng minh: AM2= BH . CK . BC
Cho tam giác ABC cân tại A; đường cao BH; biết BH=h. Giải tam giác ABC
Cho tam giác ABC cân tại A, đường cao BH. Từ điển M trên cạnh BC kẻ MP vuông góc AB, MQ vuông góc AC. CMR MP+MQ=BH