Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nữ hoàng sến súa là ta
Xem chi tiết
lê duy mạnh
14 tháng 10 2019 lúc 15:55

tích cho t đi

Quốc Huy
Xem chi tiết
Phạm Hoàng Khánh Linh
15 tháng 8 2021 lúc 19:56

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 20:00

Tham khảo:

Phạm Hoàng Khánh Linh
15 tháng 8 2021 lúc 20:11

CÁM ƠN NHÉ!!vui

anhquan
Xem chi tiết
Nguyễn Huy Tú
2 tháng 9 2021 lúc 13:12

*, Kẻ OH vuông AB, H \(\in\)AB 

=> H là trung điểm AB 

=> HB = AB/2 = 40/2 = 20 cm 

Theo định lí Pytago tam giác OBH vuông tại H 

\(OH=\sqrt{OB^2-HB^2}=15\)cm 

*, Kẻ OT vuông CD, T \(\in\)CD

=> T là trung điểm CD 

=> TD = DC/2 = 48/2 = 24 cm 

Theo định lí Pytago tam giác ODC vuông tại T

\(OT=\sqrt{OD^2-DT^2}=7\)cm 

 

Đào Thị Quỳnh Anh
Xem chi tiết
Adu vip
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 23:01

undefined

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 23:00

Từ O kẻ đường thẳng vuông góc AB và CD, cắt AB và CD lần lượt tại H và K

\(\Rightarrow\) H là trung điểm AB và K là trung điểm CD

\(\Rightarrow\left\{{}\begin{matrix}AH=\dfrac{1}{2}AB=4\\CK=\dfrac{1}{2}CD=4,8\end{matrix}\right.\)

Áp dụng định lý Pitago cho tam giác vuông OAH (với chú ý \(OA=OC=R=5\))

\(OH=\sqrt{OA^2-AH^2}=3\left(cm\right)\)

Pitago tam giác OCK:

\(OK=\sqrt{OC^2-CK^2}=1,4\left(cm\right)\)

\(\Rightarrow HK=OH+OK=4,4\left(cm\right)\)

LuKenz
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:01

Qua O kẻ đường thẳng vuông góc AB và CD, lần lượt cắt AB và CD tại E và F \(\Rightarrow\) E là trung điểm AB, F là trung điểm CD

\(AE=\dfrac{1}{2}AB=4\left(cm\right)\) ; \(CF=\dfrac{1}{2}CD=3\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông OAE:

\(OE=\sqrt{OA^2-AE^2}=\sqrt{R^2-AE^2}=3\left(cm\right)\)

Pitago tam giác vuông OCF:

\(OF=\sqrt{OC^2-CF^2}=\sqrt{R^2-CF^2}=4\left(cm\right)\)

\(\Rightarrow EF=OE+OF=7\left(cm\right)\)

Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:02

undefined

Nguyễn Khánh Việt
Xem chi tiết
Nguyễn Thị Phương Thảo
24 tháng 9 2021 lúc 10:27

Qua O kẻ đường thẳng vuông góc AB và CD, lần lượt cắt AB và CD tại E và F ⇒ E là trung điểm AB, F là trung điểm CD

AE=12AB=4(cm) ; CF=12CD=3(cm)

Áp dụng định lý pytago cho tam giác vuông OAE

OE=√OA2−AE2=√R2−AE2=3(cm)

Pitago tam giác vuông OCF:

OF=√OC2−CF2=√R2−CF2=4(cm)

⇒EF=OE+OF=7(cm)

chúc bn học tốt !

Khách vãng lai đã xóa
Name Win
14 tháng 5 2023 lúc 22:29

a) Ta có AH là đường cao của tam giác ABC, do đó AB là đường trung trực của đoạn thẳng LH (vì H là trung điểm của BC).

b) Ta có $\angle AED = \angle ACD$ do cùng chắn cung AD trên đường tròn (T). Mà $\angle A = \angle APQ$ vì DE // PQ, nên $\angle AED = \angle APQ$. Tương tự, ta cũng có $\angle ADE = \angle AQP$. Do đó tam giác ADE và APQ đều có hai góc bằng nhau, tức là cân.

c) Ta có $\angle LBD = \angle LCB$ do cùng chắn cung LB trên đường tròn (T). Mà $\angle LCB = \angle LPB$ vì DE // PQ, nên $\angle LBD = \angle LPB$. Tương tự, ta cũng có $\angle LDC = \angle LQC$. Do đó tam giác LBD và LPQ đều có hai góc bằng nhau, tức là đồng dạng. Vậy ta có $\frac{LD}{LP} = \frac{LB}{LQ}$.

Từ đó, có $\frac{LP}{LQ} = \frac{LB}{LD}$. Áp dụng định lý cosin trong tam giác BPQ, ta có:

$PQ^2 = BP^2 + BQ^2 - 2BP \cdot BQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có:

$BP = LB \cdot \frac{LD}{LP}$

$BQ = L \cdot \frac{LP}{LD}$

Thay vào định lý cosin, ta được:

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \frac{LD}{LP} \cdot \frac{LP}{LD} \cdot \cos{\angle PBQ}$

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \cos{\angle PBQ}$

Tương tự, áp dụng định lý cosin trong tam giác ADE, ta có:

$DE^2 = AD^2 + AE^2 - 2AD \cdot AE \cdot \cos{\angle AED}$

Nhưng ta cũng có:

$AD = LD \cdot \frac{LB}{LP}$

$AE = LQ \cdot \frac{LD}{LP}$

Thay vào định lý cosin, ta được:

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \frac{LB}{LP} \cdot \frac{LD}{LP} \cdot \cos{\angle AED}$

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \cos{\angle AED}$

Nhưng ta cũng có $\angle AED = \angle PBQ$ do tam giác cân ADE và APQ, nên $\cos{\angle AED} = \cos{\angle PBQ}$. Do đó,

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LB \cdot LQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có $LB \cdot LQ = LH \cdot LL'$ (với L' là điểm đối xứng của L qua AB), do tam giác HL'B cân tại L'. Thay vào phương trình trên, ta được:

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LH \cdot LL' \cdot \cos{\angle PBQ}$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 6 2018 lúc 8:22

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ AB, ON ⊥ CD.

Ta thấy M, O, N thẳng hàng. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông AMO có:

OM2 = OA2 – AM2 = 252 – 202 = 225

=> OM = √225 = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

CN2 = CO2 – ON2 = 252 – 72 = 576

=> CN = √576 = 24

=> CD = 2CN = 48cm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 4 2017 lúc 8:28

 

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ AB, ON ⊥ CD.

Ta thấy M, O, N thẳng hàng. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông AMO có:

O M 2   =   O A 2   –   A M 2   =   25 2   –   20 2 =   22 2

=> OM = √225 = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

C N 2   =   C O 2   –   O N 2   =   25 2   –   7 2   =   576

=> CN = √576 = 24

=> CD = 2CN = 48cm