Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Lê Minh Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2021 lúc 21:34

a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:

\(EF^2=DE^2+DF^2\)

\(\Leftrightarrow EF^2=9^2+12^2=225\)

hay EF=15(cm)

Vậy: EF=15cm

I
30 tháng 3 2021 lúc 22:02

a) Xét tam giác EDF có: EF2 = DE2 + DF(đ/lí py-ta-go)

                                         =>  EF= 9+ 122

                                                 =>  EF2 = 81 + 144 = 225

                                         =>  EF = 112,5 cm

I
30 tháng 3 2021 lúc 22:08

b) Xét tam giác DEM và tam giác DEF có :

EDM = EDF = 1v            

ED chung                                     

DM = DF (gt)                   

=> tam giác DEM = tam giác DEF (c.g.c) hay (c/huyền+c/góc vuông)

 

Trần Anh Vũ
Xem chi tiết
tepriu9
Xem chi tiết
Bé Ken
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2021 lúc 22:24

a) Xét ΔDEF vuông tại E và ΔDEK vuông tại E có 

DE chung

EF=EK(gt)

Do đó: ΔDEF=ΔDEK(hai cạnh góc vuông)

sdffdfdf
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 3 2023 lúc 23:56

a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có

MD=MN

góc EMD=góc IMN

=>ΔMED=ΔMIN

b: ΔMED=ΔMIN

=>góc MDE=góc MNI=góc MDP

=>DP=NP

Lu nekk
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 22:43

a: Xét tứ giác DIMK có

\(\widehat{DIM}=\widehat{DKM}=\widehat{KDI}=90^0\)

=>DIMK là hình chữ nhật

b: Xét tứ giác DEHF có

M là trung điểm chung của DH và EF

=>DEHF là hình bình hành

Hình bình hành DEHF có \(\widehat{FDE}=90^0\)

nên DEHF là hình chữ nhật

Nguyễn Thị Tú Phương
Xem chi tiết
Thanh Hoàng Thanh
1 tháng 1 2022 lúc 22:20

1) Xét tam giác DEF có:

+ A là trung điểm của DE (gt).

+ B là trung điểm của DF (gt).

\(\Rightarrow\) AB là đường trung bình của tam giác DEF.

\(\Rightarrow\) AB // EF và AB = \(\dfrac{1}{2}\) EF (Tính chất đường trung bình trong tam giác).

2) Xét tam giác DEF vuông tại D có:

DA là đường trung tuyến (A là trung điểm của EF).

\(\Rightarrow\) DA = \(\dfrac{1}{2}\) EF (Tính chất đường trung tuyến trong tam giác vuông).

3) Xét tam giác DEF có:

+ DB là đường trung tuyến (B là trung điểm của EF).

+ DB = \(\dfrac{1}{2}\) EF (gt).

\(\Rightarrow\) Tam giác DEF vuông tại D.

lò văn á
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2021 lúc 22:00

a) Xét ΔAED vuông tại E và ΔAFD vuông tại F có 

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(AD là tia phân giác của \(\widehat{EAF}\))

Do đó: ΔAED=ΔAFD(cạnh huyền-góc nhọn)

Suy ra: DE=DF(Hai cạnh tương ứng)

Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)

nên \(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=\dfrac{120^0}{2}=60^0\)

hay \(\widehat{EAD}=\widehat{FAD}=60^0\)

Ta có: ΔAED vuông tại E(gt)

nên \(\widehat{EAD}+\widehat{EDA}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{EDA}=90^0-60^0=30^0\)

Ta có: ΔAFD vuông tại F(Gt)

nên \(\widehat{FAD}+\widehat{FDA}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{FDA}=90^0-60^0=30^0\)

Ta có: \(\widehat{EDA}+\widehat{FDA}=\widehat{EDF}\)(tia DA nằm giữa hai tia DE và DF)

\(\Leftrightarrow\widehat{EDF}=30^0+30^0\)

hay \(\widehat{EDF}=60^0\)

Xét ΔDEF có DE=DF(cmt)

nên ΔDEF cân tại D(Định nghĩa tam giác cân)

Xét ΔDEF cân tại D có \(\widehat{EDF}=60^0\)(cmt)

nên ΔDEF đều(Dấu hiệu nhận biết tam giác đều)

Đỗ Đức Hà
Xem chi tiết