Cho tam giác DEF vuông tại D. Lấy điểm A trên EF. Kẻ AB // DF ; AC // DE ( B thuộc DE ; C thuộc DF) và A khác E,F
1, Chứng Minh DA = BC
2, Kẻ DH vuông góc EF tại H . Tính góc BHC = ?
Cho tam giác DEF vuông tại D. Trên tia đối của DF lấy điểm M sao cho DM = DF a, cho DE= 9cm, DF = 12 cm, tính EF b, CM ∆DEM= ∆DEF c, kẻ DH vuông góc với ME, DK vuông góc với EF, cm ∆HEK cân d, CM HD // EF
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
a) Xét tam giác EDF có: EF2 = DE2 + DF2 (đ/lí py-ta-go)
=> EF2 = 92 + 122
=> EF2 = 81 + 144 = 225
=> EF = 112,5 cm
b) Xét tam giác DEM và tam giác DEF có :
EDM = EDF = 1v
ED chung
DM = DF (gt)
=> tam giác DEM = tam giác DEF (c.g.c) hay (c/huyền+c/góc vuông)
Cho tam giác DEF vuông tại D, EK là tia phân giác của góc DEF ( K thuộc DF ). Trên tia EF lấy điểm H sao cho EH=ED.
a) Chứng minh tam giác EDK=tam giác EHK, từ đó chứng minh HK vuông góc với EF
b) Từ H kẻ đường thẳng vuông góc với DF, nó cắt DF tại I. Chứng minh HI // ED
Mọi người giúp em bài này với ạ
Cho tam giác DEF vuông tại D (DE < DF). Kẻ tia phân giác của góc DEF cắt DF tại A. Trên cạnh EF lấy điểm B sao cho: EB = ED. 1) Chứng minh rằng: ∆EDA = ∆EBA; 2) Gọi giao điểm của DB và EA là I. Hỏi I có là trung điểm của DB không? Vì sao? 3) Kéo dài BA cắt ED tại K. Chứng minh: DK = BF và DB // KF.
cho tam giác DEK vuông tại E (EK < ED). Trên tia đối của tia EK lấy điểm F sao cho EF = EK a ) tam giác DEF = tam giác DEK
b) từ điểm E, kẻ đường thẳng d // DF và cắt DK tại M . C/m tam giác MEC cân
c) trên tia EMlấy điểm N sao cho MN=ME . C/m NK\(\perp\) EK
a) Xét ΔDEF vuông tại E và ΔDEK vuông tại E có
DE chung
EF=EK(gt)
Do đó: ΔDEF=ΔDEK(hai cạnh góc vuông)
Cho tam giác DEF vuông tại E (ED < EF), tia phân giác của góc D cắt EF tại M. Trên tia đối của tia MD lấy điểm N sao cho DM = MN, từ điểm N vẽ đường thẳng vuông góc với EF tại I và cắt DF tại điểm P.
a) Chứng minh tam giác EDM = TAM GIÁC INM.
b) Chứng minh DP = NP.
a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có
MD=MN
góc EMD=góc IMN
=>ΔMED=ΔMIN
b: ΔMED=ΔMIN
=>góc MDE=góc MNI=góc MDP
=>DP=NP
1, Cho tam giác DEF vuông tại D. M là trung điểm EF kẻ MI vuông góc DE, MK vuông góc DF a, Tứ giác DIMK là hình chữ nhật b, Trên tia đối MD lấy H: MD=MH. Chứng minh DEHF là hình chữ nhật
a: Xét tứ giác DIMK có
\(\widehat{DIM}=\widehat{DKM}=\widehat{KDI}=90^0\)
=>DIMK là hình chữ nhật
b: Xét tứ giác DEHF có
M là trung điểm chung của DH và EF
=>DEHF là hình bình hành
Hình bình hành DEHF có \(\widehat{FDE}=90^0\)
nên DEHF là hình chữ nhật
1) cho tam giác DEF có A,B thứ tự là trung điểm của DE và DF. CMR:AB//EF và AB=1/2 EF
2) cho tam giác DEF vuông tại D có A là trung điểm của EF. Chứng minh DA1/2 È
3) cho tam giác DEF có B là tủng điểm của EF và DB=1/2 EF. CMR tam giác DEF vuông tại D
4) Cho tam giác DEF vuông tại D có góc E =30 độ. CM DF=1/2 EF
5) Cho tam giác DEF vuông tại D có DF=1/2 EF. Chứng minh góc E =30 độ
1) Xét tam giác DEF có:
+ A là trung điểm của DE (gt).
+ B là trung điểm của DF (gt).
\(\Rightarrow\) AB là đường trung bình của tam giác DEF.
\(\Rightarrow\) AB // EF và AB = \(\dfrac{1}{2}\) EF (Tính chất đường trung bình trong tam giác).
2) Xét tam giác DEF vuông tại D có:
DA là đường trung tuyến (A là trung điểm của EF).
\(\Rightarrow\) DA = \(\dfrac{1}{2}\) EF (Tính chất đường trung tuyến trong tam giác vuông).
3) Xét tam giác DEF có:
+ DB là đường trung tuyến (B là trung điểm của EF).
+ DB = \(\dfrac{1}{2}\) EF (gt).
\(\Rightarrow\) Tam giác DEF vuông tại D.
CHO TAM GIÁC ABC ,CÓ GÓC A = 120 ,TIA PHÂN GIÁC CỦA GÓC BAC CẮT BC TẠI D .KẺ DE VUÔNG AB ,DF VUÔNG AC.TRÊN ĐOẠN EB LẤY ĐIỂM K ,TRÊN ĐOẠN FC LẤY ĐIỂM I SAO CHO :EK = FI .QUA C ,KẺ ĐƯỜNG THẲNG // VỚI AD CẮT TIA BA TẠI M.
CM:A,TAM GIÁC DEF ĐỀU
B, TAM GIÁC DKI CÂN
C,CHO BIẾT CM = 8 cm,CF = 5cm.TÍNH AD.
a) Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(AD là tia phân giác của \(\widehat{EAF}\))
Do đó: ΔAED=ΔAFD(cạnh huyền-góc nhọn)
Suy ra: DE=DF(Hai cạnh tương ứng)
Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)
nên \(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=\dfrac{120^0}{2}=60^0\)
hay \(\widehat{EAD}=\widehat{FAD}=60^0\)
Ta có: ΔAED vuông tại E(gt)
nên \(\widehat{EAD}+\widehat{EDA}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{EDA}=90^0-60^0=30^0\)
Ta có: ΔAFD vuông tại F(Gt)
nên \(\widehat{FAD}+\widehat{FDA}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{FDA}=90^0-60^0=30^0\)
Ta có: \(\widehat{EDA}+\widehat{FDA}=\widehat{EDF}\)(tia DA nằm giữa hai tia DE và DF)
\(\Leftrightarrow\widehat{EDF}=30^0+30^0\)
hay \(\widehat{EDF}=60^0\)
Xét ΔDEF có DE=DF(cmt)
nên ΔDEF cân tại D(Định nghĩa tam giác cân)
Xét ΔDEF cân tại D có \(\widehat{EDF}=60^0\)(cmt)
nên ΔDEF đều(Dấu hiệu nhận biết tam giác đều)
Cho tam giác ABC có AB AC BC m m 0 . Trên cạnh Bc lấy D sao cho BD 1 3 BC. Từ D kẻ DE vuông góc BC tại D E thuộc AB , kẻ DF vuông góc AC tại F .a Chứng minh tam giác DEF đềub Lấy điểm M bất kì trên cạnh BC , từ M kẻ MH vuông góc AB tại H, MK vuông góc AC tại K .Tính MH MK 2