Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
anh_tuấn_bùi
Xem chi tiết
Phạm Hồ Thanh Quang
14 tháng 6 2017 lúc 9:29

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

Jepz Ki
17 tháng 9 2019 lúc 21:18

Câu này dễ

AH 12cm

AC13cm

AB13cm

nguyễn huy tuấn
Xem chi tiết
Nguyễn Nam Dương
24 tháng 12 2021 lúc 16:35

Áp dụng định lý Pitago, ta có: \(AC^2=AH^2+HC^2\)

\(\Rightarrow20^2=12^2+HC^2\)

\(\Rightarrow HC^2=20^2-12^2\)

\(\Rightarrow HC^2=400-144=256\)

\(\Rightarrow HC=16\left(cm\right)\)

Áp dụng định lý Pitago, ta có: \(AB^2=BH^2+AH^2\)

\(\Rightarrow AB^2=5^2+12^2\)

\(\Rightarrow AB^2=25+144=169\)

\(\Rightarrow AB=13\left(cm\right)\)

Vậy CV tam giác ABC là

\(20+5+16+13=54\left(cm\right)\)

Khách vãng lai đã xóa
Phạm thị thảo
Xem chi tiết
Otoshiro Seira
3 tháng 3 2018 lúc 19:05

Ta có:\(AC^2=HC^2+AH^2\)(Định lý pytago)

\(\Rightarrow AH^2=AC^2-HC^2=4^2-2^2=16-4=12\)

\(\Rightarrow AH=\sqrt{12}\approx3\)

Độ dài BC là :3+2=5

Chu vi của tam giác ABC la:\(4+5+5\approx14\)

Thái Thanh Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 14:38

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

Trịnh Hà 7e
Xem chi tiết
Nguyễn mạnh cường
Xem chi tiết
Devil
29 tháng 2 2016 lúc 14:39

ta có:

\(BH^2=AB^2-AH^2=13^2-5^2=169-25=144\)

\(BH=\sqrt{144}=12\)

\(HC^2=AC^2-AH^2=9^2-5^2=81-25=56\)

\(HC=\sqrt{56}\)

BC=BH+HC=căn 56 +12

Nguyễn Thị Minh Trúc
Xem chi tiết
Huyền Trân Lê
Xem chi tiết
võ ngọc nhã khanh
3 tháng 3 2016 lúc 18:53

Gọi I là giao điểm của AH và BC

Áp dụng định lí pytago trong tam giác vuông ABI ta có

BI2=AB2-AH2

BI2=8.52-42=56.25

BI=căn bậc hai của 56.25

Áp dụng định lí pytago trong tam giác vuông AIC ta có

IC^2=AC^2-AI^2

HC^2=5^2-4^2=9

HI=3

Ta co BI+IC=BC

      7.5+3=10.5

Chu vi của tam giác ABC là 8.5+5+10.5=24

Eun Junn
Xem chi tiết
Thanh Hoàng Thanh
23 tháng 1 2022 lúc 15:39

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường phân giác góc A (Tính chất tam giác cân).

b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của BC.

=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).

Xét tam giác AHB vuông tại A:

Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).

=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)

=> AH = 3 (cm).

c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:

AH chung.

Góc DAH = Góc EAH (AH là đường phân giác góc A).

=> Tam giác AHD = Tam giác AHE (ch - gn).

=> HD = HE (2 cạnh tương ứng). 

=> Tam giác DHE cân tại H.

9420
Xem chi tiết
%Hz@
17 tháng 1 2020 lúc 20:06

A B C H

TA CÓ BH + HC = BC

=> BC = 9+16=25

THEO ĐỊNH LÝ PITAGO XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ

\(BC^2=AB^2+AC^2\)

\(AB^2=BC^2-AC^2\)

\(AB^2=25^2-5^2\)

......

AH TƯƠNG TỰ

Khách vãng lai đã xóa