Cho góc nhọn xoy .trên tia oy lấy điểm B (BϵO) sao cho OA=OB. Kẻ AC vuông góc OY (Cϵ OY); BD vuông góc Ox (Dϵox). Gọi I là giao điểm của AC và BD
a) Cmr ΔAOC=ΔBOD
b) Cmr tam giác AIB cân
c) So sánh IC và IA
Cho góc xoy< 90 độ. Trên tia ox lấy điểm a trên tia oy lấy điểm b( sao cho OA=OB). Kẻ AC vuông góc với OY,BD vuông góc Ox. chưng minh AB//CD
Cho góc nhọn xOy , trên tia Ox lấy điểm A , trên tia Oy lấy điểm B,sao cho OA=OB. Kẻ AC vuông góc vs Oy(C thuộc Oy) ,BD vuông góc vs Ox(D thuộc Ox). I là giao đểm của AC và BD
a) Cm tam giác AOC=tam giác BOD
b) cm tam giác AIB cân
c) so sánh IC và IA
d) cm góc IAB=1/2 góc AOB
a: Xét ΔOCA vuông tại C và ΔODB vuông tại D có
OA=OB
góc O chung
=>ΔOCA=ΔODB
b: Xét ΔBDA vuông tại D và ΔACB vuông tại C có
BD=AC
BA chung
=>ΔBDA=ΔACB
=>góc IAB=góc IBA
=>ΔIAB cân tại I
c: IA=IB
IB>IC
=>IA>IC
Cho tam giác nhọn xOy , trên tia Ox lấy điểm A ( A khác 0 ), trên tia Oy lấy điểm B (B khác 0) sao cho OA=OB. Kẻ AC vuông góc Oy (C thuộc Oy), BD vuông góc Ox (D thuộc Ox) gọi I là giao điểm AC và BD
a) Chứng minh am giác AOC=BOD;
b) Chứng minh tam giác AIB cân
c) so sánh IC và IA
d) chứng minh góc IAB=1/2 AOB
a: Xét ΔAOC vuông tại C và ΔBOD vuông tại D có
OA=OB
góc O chung
=>ΔAOC=ΔBOD
b: góc CAO+góc IAB=góc OAB
góc OBD+góc IBA=góc OBA
mà góc CAO=góc OBD và góc OAB=góc OBA
nên góc IAB=góc IBA
=>ΔIAB cân tại I
c: IC=ID
ID<IA
=>IC<IA
: Cho góc nhọn xOy. Trên cạnh Ox lấy điểm A, trên cạnh Oy lấy điểm B sao cho OA = OB. Đường vuông góc với Ox kẻ qua A cắt Oy tại điểm C. Đường vuông góc với Oy kẻ qua B cắt Ox tại D và cắt AC tại I. Đường vuông góc với Ox kẻ qua D cắt Oy tại E. Đường vuông góc với Oy kẻ qua C cắt Ox tại F và cắt DE tại J. Chứng minh rằng:
Chứng minh rằng:
a) Tam giác AOI = tam giác BOI
b) OJ là tia phân giác của góc xOy.
c) Ba điểm O, I, J thẳng hàng.
Mn giúp em với ạ
Cho góc nhọn xOy . trên tia Ox lấy điểm A , trên tia Oy lấy điểm B sao cho OA = OB . Từ A hạ AC vuông góc Oy . Từ B hạ BD vuông góc Ox . Chứng minh OC = OD
BÀI 4 :cho góc XOY là góc nhọn , trên tia ox lấy điểm A (A khác 0 ), trên tia oy lấy điểm b sao cho oa=ob , từ A kẻ đường thẳng vuông góc vs OA , cắt oy tại e , từ b kẻ đường thẳng vuông góc với OB, cắt OX tại F
A, vẽ hình
B, chứng minh tam giác OAE= tam giác OBF , từ đó suy ra OE=OF
C, gọi i là giao điểm của AE và BF gọi M là trung điểm của EF so sánh và Ei + iF/2
Gỉa sử đường trung trực của OA cắt OA tại H; đường trung trực của OB cắt OB tại K
Vì HI là đường trung trực của OA nên IO = IA (tính chất đường trung trực của đoạn thẳng)
Vì KI là đường trung trực của OB nên IO = IB (tính chất đường trung trực của đoạn thẳng)
b: Xet ΔOAE vuông tại A và ΔOBF vuông tại B có
OA=OB
góc O chung
=>ΔOAE=ΔOBF
=>OE=OF
a:
Cho góc xoy nhọn , trên tia Ox lấy điểm A , trên tia Oy lấy B sao cho OA =OB . Từ A kẻ đường thẳng vuông góc OX , từ B kẻ đường thẳng vuông góc vs Oy cắt nhau tại I
a, CMR: tam giác IAB cân
b,CMR;OI là tia phân giác của góc xOy
c, Gọi AI cắt Oy tại D , BI cắt Ox tại C , CMR: tam giác OBC = tam giác OAD
d, CMR: AB//CD
a, NỐi O với I
Xét Tam giác OAI và tam giác OBI có
OA=OB
A=B=90 độ
OI chung
=>HAI tam giác bằng nhau
=>AI=BI (t/ư)
=>tam giác AIB cân tại I
Câu 4: cho góc nhọn xoy, Trên Ox lấy điểm A. Trên Oy lấy điểm B sao cho OA = OB. Kẻ AC vuông góc Oy ( C thuộc Oy), BD vuông góc Ox ( D thuộc Ox). I là giao điểm của AC và BD.
a)Chứng minh tam giác AOC = tam giác BOD.
b) chứng minh tam giác AID = tam giác BIC.
c) So sánh IC và IA.
a) Xét ΔAOC vuông tại C và ΔBOD vuông tại D có
OA=OB(gt)
\(\widehat{AOC}\) chung
Do đó: ΔAOC=ΔBOD(cạnh huyền-góc nhọn)
cho góc nhọn xOy. trên tia Ox lấy điểm A, trên tia oy lấy điểm B sao cho OA=OB. từ A kẻ đường vuông góc với Ox cắt Oy tại C. từ B kẻ đường vuông góc với Oy cắt Ox tại D . gọi M là giao điểm của AC và BD
a, chứng minh tam giác AOM=tam giác BOM
b, chứng minh OM là tia phân giác của góc xOy
c, chứng minh OC=OD