Cho Δ ABC vuông tại A có AH là đường cao ( H thuộc cạnh BC ) . Biết AB = 21cm , AC = 28cm . a) Tính độ dài các Cạnh BC , BH . b) Chứng minh : Δ ABH đồng dạng Δ CBA
xét tam giác ABC vuông tại A ( gt)
\(AB^2+AC^2=BC^2\)
=> \(BC^2=AB^2+AC^2\)
= \(21^2+28^2=1225\)
=> BC = \(\sqrt{1225}=35\left(BC>0\right)\)
VẬY BC = 35 CM
Cho Δ ABC vuông tại A , đường cao AH ( H thuộc BC )
a) Tính BH , AH biết AB =20cm ,BC=25cm
b) Từ B kẻ đường thẳng vuông góc với đường trung tuyến AD của tam giác ABC tại E cắt AC tại F . Chứng Minh Δ BHF đồng dạng với Δ BEC
giải chi tiết giúp mk vớiiiiii ạ
Cho Δ ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh rằng: Δ AEF Δ ABC.
b) Cho AH = 4,8cm; BC = 10cm. Tính SΔAEF?
c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy tại một điểm.
Cho tam giác ABC vuông tại A, đường cao AD
a. Chứng minh : Δ ABD đồng dạng Δ CBA, từ đó suy ra : AB2 = BC.BD
b. Vẽ BM là đường phân giác của góc BAC, BM cắt AD tại I. Chứng minh : \(\dfrac{IA}{ID}\)X\(\dfrac{MA}{MC}\)= 1
c. Vẽ AH vuông góc với MB tại H. Chứng minh: Góc CMB = Góc BDH
a: Xét ΔABD vuông tại D và ΔCBA vuông tại A có
góc B chung
=>ΔABD đồng dạng với ΔCBA
=>BA^2=BD*BC
b: IA/ID=BA/BD
MA/MC=BA/BC
=>IA/ID*MA/MC=BA^2/BD*BC=1
Cho Δ ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. a) Chứng minh rằng: Δ AEF Δ ABC. b) Cho AH = 4,8cm; BC = 10cm. Tính SΔAEF? c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy tại một điểm.
giúp mình câu c với ạ
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:
\(AE\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:
\(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF\(\sim\)ΔACB
Cho tam giác ABC vuông tại A đường cao AH
a) chứng minh Δ ABC đồng dạng Δ BHA
b) cho AB=6cm, AC=8cm. Tính BC, AC
c) Vẽ HE vuông góc AB tại E, HF vuông góc AC tại F. Chứng minh AE.AB=AF.AC (mn giải giúp câu c vs ạ)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
c: ΔABH vuông tại H
mà HE là đường cao
nên AE*AB=AH^2
ΔACH vuông tại H có HF là đường cao
nên AF*AC=AH^2=AE*AB
Bài 3: Cho ΔABC vuông tại A (AB < AC), vẽ đường cao AH (H ∈∈ BC).
a/ Chứng minh: ΔHBA đồng dạng với ΔABC từ đó suy ra: AB2 = BH.BC
b/ Kẻ tia phân giác AD của ΔABC. Cho AB = 12cm, AC = 16cm. Tính BD, CD.
c/ Từ C kẻ đường thẳng vuông góc với AD tại N. Kẻ trung tuyến AM của ΔABC, AM cắt CN tại K.
Chứng minh: AH.AK = AN.AD
Cho Δ ABC vuông cân tại A. Kẻ tia phân giác của góc A cắt BC tại H. Trên tia AB, AC lấy điểm N và M sao cho BN=AM. Chứng minh rằng: a, Δ AHN= Δ CHM b, Δ AHM= Δ BHN c, Δ MHN vuông cân
a: Xet ΔAHN và ΔCHM có
AH=CH
góc HAN=góc HCM
AN=CM
=>ΔAHN=ΔCHM
b: Xet ΔAHM và ΔBHN co
AH=BH
góc HAM=góc HBN
AM=BN
=>ΔAHM=ΔBHN
cho tam giác ABCvuông tại A , đường cao AH .
a) chứng minh Δ ABC đòng dang với ΔHAC
b) chứng minh AC^2 = CH . BC ,
c) trên tia đối của AB lấy CD sao cho CD>AB , vẽ AK vuông góc với DC tại K , gọi M là giao điểm của DH và KB . chứng minh Δ DMK đòng dạng với Δ BMH
a: Xet ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB