Cho tam giác ABC cân tại B . Trên cạnh BA; BC lần lượt lấy I, K soa cho AI = CK . Biết góc BAC = 55 độ . Tính số đo góc KIA
cho tam giác ABC vuông tại A có AB > AC trên cạnh BC Lấy điểm E sao cho BA = BE. Tia phân giác của góc B cắt cạnh AC tại F
a) CMR: ABF=EBF
b)Tia EF cắt tia BA Tại K ,CMR:BCK cân
xét tg ABF và tg EBF có
BF chung
gABF = gEBF (gt)
AB = BE (gt)
=> tgABF = tgEBF (c-g-c)
vì tg ABF = tgEBF (theo (a) )
=> gBAF = gBEF = 90O
=> AF = EF
xét tg AFK và tg EFC
AF= EF (cmt)
gAFK =g EFC (đ.đ)
gBAF = gBEF (CMT)
=> tg AFK = TG EFC (g-c-g)
=> AK = EC ( 2 cạnh t/ư)
=> BA + AK = BE + EC
hay BK = BC
=> tg BCK cân
Cho tam giác ABC cân tại A ( AB> BC )/. TRên cạnh AC lấy điềm D sao cho BD = DC. cm:
a, góc ABC = góc BDC ?
b, Trên tia đối cùa tia BA lay điềm E : BA = AD . Cm : tam giac DAB = tam giac BEC
c, Cm : tam giác ACE cân , TAm giac CBD cân
Cho tam giác ABC có góc A bằng 70độ, góc B bằng 60độ
a, so sánh các cạnh của tam giác ABC
b, trên BC lấy điểm M sao cho BM=BA .Tia phân giác góc B cắt AC tại D .CM: ∆BAD=∆BMD.
c, Tia MD cắt tại BA tại H, CM ∆DHC cân
anh em copy link này lên youtube xem rồi đăng kí nhe cảm ơn
https://www.youtube.com/shorts/hhpTDItpePY
Bài 4. Cho tam giác nhọn ABC, tia phân giác của góc B cắt cạnh AC tại D. Lấy điểm E trên cạnh BC sao cho AE = BA. Chứng minh rằng:
a) .
b) Tam giác ADE cân.
c) Gọi F là giao điểm của ED và BA. Chứng minh AE // FC.
1. Tam giác ABC cân tại A có góc A=100*. Lấy các điểm D và E sao cho trên cạnh BC có BD=BA, CE=CA. Tính góc DAE
2.Cho tam giác ABC cân tại góc B . Gọi BE là đường phân giác của góc ngoài tại B . C/minh BE//AC
Cho tam giác ABC cân tại A có góc A = 130 độ . Trên cạnh BC lấy Một điểm D sao cho CAD = 50 độ . Từ C kẻ tia Cx cắt BA tại E .
a, Chứng minh rằng tam giác AEC là tam giác cân
b, Trong tam giác AEC , cạnh nào là cạnh lớn nhất , vì sao ?
bạn viết đề lại đi
hình như thiếu
... Từ C kẻ tia Cx cắt BA tại E (sao cho)...
Bài 1 :Cho tam giác ABC cân tại A, góc A= 20 độ. Trên cạnh AB lấy điểm D sao cho AD=BC. CMR:góc DCA= 1/2 góc A
Bài 2 :Cho tam giác ABC vuông cân tại A, góc C=15 độ. Trên tia BA lấy điểm O
sao cho BO=2AC.CMR : tam giác OBC cân.
cho tam giác ABC vuông tại A, phân giác góc B cắt AC tại I ,trên cạnh BC lấy E sao cho BE = BA :
a, 2 tia BA và EI cắt ở D . C/M tam giác AID = tam giác EIC và tam giác ICD cân
b, C/M: AE song song DC
Cho tam giác ABC có góc A bằng 80độ, góc B bằng 60độ
a, so sánh các cạnh của tam giác ABC
b, trên BC lấy điểm M sao cho BM=BA .Tia phân giác góc B cắt AC tại D .CM: ∆BAD=∆BMD.
c, Tia MD cắt tại BA tại H, CM ∆DHC cân
a: \(\widehat{C}=180^0-60^0-80^0=40^0< \widehat{B}< \widehat{A}\)
nên AB<AC<BC
b: Xét ΔBAD và ΔBMD có
BA=BM
\(\widehat{ABD}=\widehat{MBD}\)
BD chung
Do đó: ΔBAD=ΔBMD
cho tam giác abc vuông cân tại a có ab>ac trên cạnh ba lấy điểm d sao cho bd=ác trên đường vuông góc với ab tại b lấy điểm f sao cho bf=ad chứng minh rằng tam giác bdf=tam giác acd và chứng minh rằng tam giác cdf là tam giác vuông