Cho tam giác ABC cân tại A, góc A bằng 120°; BC = 10cm. Đường thắng vuông góc với AB tại A cắt cạnh BC ở điểm D. Tính độ dài đoạn thắng AD?
Heo miiiiiii!!! T
Cho tam giác ABC cân tại A có góc BAC =120 độ và cạnh BC=6.Bán kính đường tròn ngoại tiếp tam giác ABC bằng bao nhiêu?
Lời giải:
Ta nhớ lại công thức, trong tam giác $ABC$ có $AB=c, BC=a, CA=b$ thì:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$.
Ứng vào bài toán, với $\sin A=\sin 120=\frac{\sqrt{3}}{2}$ và $a=BC=6$ thì:
$R=\frac{a}{2\sin A}=\frac{6}{2.\frac{\sqrt{3}}{2}}=2\sqrt{3}$
Cho tam giác ABC cân tại A, góc A bằng 120 độ, BC bằng 6cm.Đường Vuông góc với AB tại A cắt BC ở D. Tính BD
cho tam giác ABC cân tại A có góc A bằng 120 độ lấy điểm E trên cạnh BC sao vho CE = CAtia p.g của góc ABC cắt AB tại G
a) chứng minh tam giác AGE cân
b) tính góc EGC
tính và vẽ hình giúp mình nhé
ban oi co phai sai de hay ko , doan CE = CA do . Ko ve hinh duoc
ko .mình vẽ hình rồi nè bạn xem có đúng ko
cho tam giác ABC cân tại A,có góc C = góc 4A.Số đo góc B bằng
A.120 độ B.30 độ C.20 độ D 80 độ
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(\widehat{BAC}=120^o\), \(AB=AC=a\). Tam giác \(SAB\) vuông tại \(B\), tam giác \(SAC\) vuông tại \(C\), góc giữa hai mặt phẳng \(\left(SAB\right)\) và \(\left(ABC\right)\) bằng \(60^o\). Gọi \(H\) là hình chiếu vuông góc của điểm \(S\) lên mặt phẳng \(\left(ABC\right)\). Chứng minh rằng \(HB\) vuông góc \(AB\) và tính thể tích khối chóp \(S.ABC\) theo \(a\)
Cho tam giác ABC cân tại A, AB be hơn BC lấy hai điểm M và N sao cho BM = CN = AB
a, Chứng minh tam giác AMN cân
b, Tính các góc của tam giác AMN góc BAC bằng 120 độ .
c, Có khi nào tam giác AMN là tam giác vuông cân được hay không
Cho tam giác ABC cân tại A có góc A=120 độ.Trên cạnh BC lấy 2 điểm M,N sao cho MA,NA lần lượt vuông góc với AB,AC.Chứng minh rằng: a)Tam giác BAM=Tam giác CAM b)Các tam giác ANB,AMC lần lượt cân tại M,N
a: Xét ΔBAM vuông tại A và ΔCAN vuông tại A có
BA=CA
góc B=góc C
=>ΔBAM=ΔCAN
b: ΔBAM=ΔCAN
=>AM=AN
góc MAB=90 độ
góc B=30 độ
=>góc AMN=60 độ
=>ΔAMN đều
góc NAB=120-90=30 độ=góc B
=>ΔNAB cân tại N
góc MAC=120-90=30 độ=góc C
=>ΔMAC cân tại M
Lời giải:
\(\cos (\overrightarrow{AB}, \overrightarrow{CA})=\frac{\overrightarrow{AB}.\overrightarrow{CA}}{|\overrightarrow{AB}||\overrightarrow{CA}|}=\frac{-\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}=-\cos (\overrightarrow{AB}, \overrightarrow{AC})=-\cos (120^0)=\frac{1}{2}\)
\(\Rightarrow \angle (\overrightarrow{AB}, \overrightarrow{CA})=60^0\)
1 . Cho tam giác ABC cân tại A , góc A = \(120^o\) , BC= 6cm . Đường vuông góc với AB tại A cắt BC ở D . Tính độ dài BD
2 . Cho tam giác ABC vuông cân tại A , đường trung tuyến AM . Trên BC lấy E , kẻ BH vuông góc với AE tại H , kẻ CK vuông góc với AE tại K . Chứng minh tam giác MHK vuông cân
Kẻ đường cao AH ; Vì \(\Delta\)ABC cân
=> H là trung điểm BC
Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)
=> ^ABH = ^ACH = 30\(^o\)
=> ^BAH = 60 \(^o\)
Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'
=> \(\Delta\)ABA' cân tại B mà ^BAA' = ^BAH = 60\(^o\)
=> \(\Delta\)ABA' đều .
Đặt: AB = x => AA' = x => AH = x/2
+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)= \(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)
=> \(BH=\frac{\sqrt{3}x}{2}\)
=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)
( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))
=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)
+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH = 30 \(^o\)=> ^ADB = 60\(^o\)
=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\)
Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)
=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)
+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)
=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)
=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)
=> \(BD=BC-DC=6-2=4cm\)
1. Cho tam giác ABC có góc A = 75 độ, góc B = 35 độ. Đường phân giác góc A cắt BC tại D. Đường thẳng qua A và vuông góc với AD cắt tia BC tại điểm E. Gọi M là trung điểm của DE. Chứng minh rằng :
a) Tam giác ACM cân
b) Chu vi tam giác ABC bằng độ đai đoạn thẳng BE
2. Cho tam giác cân ABC (CA=CB), góc C = 120 độ, Trên cạnh AB lấy điểm D sao cho AD=a, DB = 2a. Tính CD