bài 2 : cho hai đa thức
A(x)=1/4x mũ 3 + 11/3x mũ 2 - 6x - 2/3x mũ 2 + 7/4x mũ 3 +2x +3
B(x)= 2x mũ 3 + 2x mũ 2 - 3x + 9
a, thu gọn và sắp xếp đa thức A(x) theo lũy thừa giảm dần của biến
\(A\left(x\right)=\dfrac{1}{4}x^3+\dfrac{11}{3}x^2-6x-\dfrac{2}{3}x^2+\dfrac{7}{4}x^3+2x+3\)
\(=\left(\dfrac{1}{4}x^3+\dfrac{7}{4}x^3\right)+\left(\dfrac{11}{3}x^2-\dfrac{2}{3}x^2\right)-\left(6x-2x\right)+3\)
\(=2x^3+3x^2-4x+3\)
a)Tính giá trị biểu thức A= 2x³ – 3x² + 5x –1 tại x= -2 b) tính nghiệm của đa thức A(x) = x–7 c) cho hai đa thức A(x) = 1 + 3x³ – 5x² + x + 4x⁵ B(x)= 3x³ – x⁴ + 3x² + 6x⁵ – 5 • Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến • Tính A(x) + B(x) d) cho góc nhọn xOy. Gọi M là một điểm thuộc tia phân giác Oz của góc xOy. Vẽ AM vuông góc với Ox (A thuộc Ox), MB vuông góc với Oy (B thuộc Oy) Chứng minh: - MA= MB - đường thẳng BM cắt Ox tại H. Đường thẳng AM cắt Oy tại K. Chứng minh tam giác AMH = tam giác BMK - gọi I là giao điểm của tia Oz và HK. chứng minh OI vuông góc với HK - cho góc xOy = 60⁰. Chứng minh tâm giác OHK đều e) cho tam giác ABC cân tại A có AB = 15cm, BC= 18cm. Vẽ đường phân giác AH của góc BAC ( H thuộc BC). Chứng minh: - tam giác ABH = tam giác ACH - vẽ trung tuyến BM ( M thuộc AC ) cắt AH tại G. Chứng minh G là trọng tâm của tam giác ABC - tính độ dài AH. Từ đó tính độ dài AH - từ H vẽ HK// AC. Chứng minh C,G,K thẳng hàng
e:
Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔABH=ΔACH
Xét ΔABC có
AH,BM là trung tuyến
AH cắt BM tại G
=>G là trọng tâm
BH=CH=9cm
=>AH=căn 15^2-9^2=12cm
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trug điểm của AB
=>C,G,K thẳng hàng
d: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAH vuông tại A và ΔMBK vuông tại B có
MA=MB
góc AMH=góc BMK
=>ΔMAH=ΔMBK
OA+AH=OH
OB+BK=OK
mà OA=OB và AH=BK
nên OH=OK
=>ΔOHK cân tại O
mà OI là phân giác
nên OI vuông góc HK
b: A(x)=0
=>x-7=0
=>x=7
Bài 7: Cho hai đa thức
M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1
N(x) = x ^ 4 * (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5
a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
b) Tinh H(x) = M(x) + N(x); G(x) = M(x) - N(x)
c) Tìm hệ số cao nhất và hệ số tự do của H(x) và G(x)
d) Tinh H(-1);H(1);G(1):G(0); H(- 3/2)
e) Tìm nghiệm của đa thức H(x)
`7,`
`a,`
\(M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1 \)
\(M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1\)
`M(x)=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`
`M(x)=-3x^5+9x^4+6x-1`
\(N(x)=x ^ 4 (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5 \)
\(N(x)=x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5\)
`N(x)=(x^5+2x^5)+(-5x^4-4x^4)+(-3x^3+3x^3)+3x-5`
`N(x)=3x^5-9x^4+3x-5`
`b,`
`H(x)=M(x)+N(x)`
\(H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5) \)
`H(x)=-3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`
`H(x)=(-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`
`H(x)=9x-6`
`G(x)=M(x)-N(x)`
\(G(x)=(-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)\)
`G(x)=-3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`
`G(x)=(-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`
`G(x)=-6x^5+18x^4+3x+4`
`c,`
`H(x)=9x-6`
Hệ số cao nhất của đa thức: `9`
Hệ số tự do: `-6`
`G(x)=-6x^5+18x^4+3x+4`
Hệ số cao nhất của đa thức: `-6`
Hệ số tự do: `4`
`d,`
`H(-1)=9*(-1)-6=-9-6=-15`
`H(1)=9*1-6=9-6=3`
`G(1)=-6*1^5+18*1^4+3*1+4`
`G(1)=-6+18+3+4=12+3+4=15+4=19`
`G(0)=-6*0^5+18*0^4+3*0+4=4`
`H(-3/2)=9*(-3/2)-6=-27/2-6=-39/2`
`e,`
Đặt `H(x)=9x-6=0`
`-> 9x=0+6`
`-> 9x=6`
`-> x=6 \div 9`
`-> x=2/3`
Vậy, nghiệm của đa thức là `x=2/3.`
Bài 1. Cho hai đa thức :
A(x)=\(5x^5\)+\(2\)-\(7x\)-\(4x^2\)-\(2x^5\)
B(x)=\(-3x^5\)+\(4x^2\)+\(3x\)-\(7\)
a.)Thu gọn và sắp xếp đa thức A(x) theo lũy thừa giảm dần của biến
b.)Tính A(x)+B(x), A(x)-B(x)
c.)Chứng tỏ x=-1 là nghiệm của đa thức A(x) nhưng không phải là nghiệm của đa thức B(x)
2. Chứng tỏ biểu thức sau không phụ thuộc vào giá trị của biến
M(\(3x\)-\(2\))(\(2x\)+\(1\))-(\(3x\)+\(1\))(\(2x\)-\(1\))
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)
`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`
`= 3x^5 - 4x^2 - 7x + 2`
`b)`
`A(x)+B(x)`
`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)
`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`
`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`
`= -4x - 5`
`b)`
`A(x) - B(x)`
`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`
`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`
`= 6x^5 - 8x^2 - 10x + 9`
`c)`
Thay `x=-1` vào đa thức `A(x)`
` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`
`= 3*(-1) - 4*1 + 7 + 2`
`= -3 - 4 + 7 + 2`
`= -7+7 + 2`
`= 2`
Bạn xem lại đề ;-;.
`2,`
`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)
`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`
`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`
`= 6x^2 - x - 2 - (6x^2 - x - 1)`
`= 6x^2 - x - 2 - 6x^2 + x + 1`
`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`
`= -1`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
2:
M=6x^2+3x-4x-2-6x^2+3x-2x+1
=-1
1;
a: A(x)=3x^5-4x^2-7x+2
b: B(x)=-3x^5+4x^2+3x-7
B(x)+A(x)
=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7
=-4x-5
A(x)-B(x)
=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7
=-6x^5-8x^2-10x+9
Bài `1`
\(a,A\left(x\right)=5x^5+2-7x-4x^2-2x^5\\ =\left(5x^5-2x^5\right)-4x^2-7x+2\\ =3x^5-4x^2-7x+2\)
\(b,A\left(x\right)+B\left(x\right)=3x^5-4x^2-7x+2+\left(-3x^5+4x^2+3x-7\right)\\ =3x^5-4x^2-7x+2-3x^5+4x^2+3x-7\\ =\left(3x^5-3x^5\right)+\left(-4x^2+4x^2\right)+\left(-7x+3x\right)+\left(2-7\right)\\ =-4x-5\)
\(A\left(x\right)-B\left(x\right)=\left(3x^5-4x^2-7x+2\right)-\left(-3x^5+4x^2+3x-7\right)\\ =3x^5-4x^2-7x+2+3x^5-4x^2-3x+7\\ =\left(3x^5+3x^5\right)+\left(-4x^2-4x^2\right)+\left(-7x-3x\right)+\left(2+7\right)\\ =6x^5-8x^2-10x+9\)
`c,` Thay `x=-1` Vào từng biểu thức ta có :
\(A\left(x\right)=3x^5-4x^2-7x+2\\=3\left(-1\right)^5-4.\left(-1\right)^2-7.\left(-1\right)+2\\ =3.\left(-1\right)-4.1-\left(-7\right)+2\\ =-3-4+7+2\\ =2\)
Cậu xem lại đề ạa
\(2,\\ M=\left(3x-2\right)\left(2x+1\right)-\left(3x+1\right)\left(2x-1\right)\\ =6x^2+3x-4x-2-\left(6x^2-3x+2x-1\right)\\=6x^2-x-2-6x^2+3x-2x+1\\ =\left(6x^2-6x^2\right)+\left(-x+3x-2x\right)+\left(-2+1\right)\\ =-1\)
`->` Vậy biểu thức không phụ thuộc vào biến `x`
Bài 1. Cho hai đa thức f(x)= 4x4-5x3+3x+2 và g(x)= -4x4+5x3+7. Trong các số -4; -3; 0 và 1, số nào là nghiệm của đa thức f(x) và g(x).
Bài 2. Cho hai đa thức f(x)=-x5+3x2+4x+8 và g(x)= -x5-3x2+4x+2. CMR đa thức f(x)-g(x) không có nghiệm
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
Cho hai đa thức: P(x) = x ^ 3 + 2x ^ 2 - 3x + 2020 Q(x) = 2x ^ 3 - 3x ^ 2 + 4x + 2021 a) Tính P(x) + O(x) b) Tính đa thức K(x) = O(x) - P(x)
a)
P(x) + O(x) = \(\left(x^3+2x^2-3x+2020\right)+\left(2x^3-3x^2+4x+2021\right)\)
P(x) + O(x) = \(3x^3-x^2+x+4041\)
b)
P(x) - O(x) = \(x^3+2x^2-3x+2020-2x^3+3x^2-4x-2021\)
P(x) - O(x) = \(-x^3+5x^2-7x-1\)
Bài 3: Cho các đa thức
P(x)= \(3x^5+5x-4x^4-2x^3+6+4x^2\)
Q(x)= \(4x^4-x+3x^2-2x^3-7-x^5\)
a) Sắp xếp các hạng tử của đa thức theo luỹ thừa giảm của biến
b) Tính P(x)+Q(x) và P(x)-Q(x)
bài 3:(2,5 điểm) Cho hai đa thức
A(x)=-4x^5-x^3+4^2+5x+7+4x^5-6x^2
B(x)=-3x^4-4x^3+10x^2-8x+5x^3-7+8x
a) thu gọn mỗi đa thức trên rồi sắp xếp chúng theo lũy thừa giảm dần của biến
b) tính P(x)=A(x)+B(x) và Q(x)=A(x)-B(x)
c) chứng tỏ rằng x=-1 là nghiệm của đa thức P(x)
a, A(x) = -4x5 - x3 + 42 + 5x + 7 + 4x5 - 6x2
= ( 4x5 - 4x5) - x3 + ( 4x2 - 6x2) + 5x + 7
= -x3 - 2x2 +5x +7
B(x) = -3x4 - 4x3 + 10x2 - 8x + 5x3 -7 +8x
= -3x4 + ( 5x3 - 4x3 ) + 10x2 + ( 8x - 8x )
= -3x4 + x3 + 10x2
b, A(x) = -x3 - 2x2 + 5x +7
+
B(x) = -3x4 + x3 + 10x2
____________________________________
P(x) = A(x) +B(x) = -3x4 + 8x2 + 5x + 7
A(x) = -x3 - 2x2 + 5x + 7
_
B(x) = -3x4 + x3 + 10x2
________________________________________
Q(x) = A(x) - B(x) = 3x4 - 2x3 - 12x2 + 5x + 7