Cho A=5x+2y; B=9x+7y(x,y thuộc Z). Chứng minh rằng A chia hết cho 17 thì B chia hết cho 17
Cho 2 đa thức
\(A=3x^2y^3-5x^3y^2-5xy+1\)
\(B=5x^3y^2-2x^2y^3-5xy+2\)
Tính A+B
A+B
=3x^2y^3-5x^3y^2-5xy+1+5x^3y^2-2x^2y^3-5xy+2
=x^2y^3-10xy+3
A+B = \(\left(3x^2y^3-5x^3y^2-5xy+1\right)+\left(5x^3y^2-2x^2y^3-5xy+2\right)\)
= \(\left(3x^2y^3-2x^2y^3\right)+\left(-5x^3y^2+5x^3y^2\right)+\left(-5xy-5xy\right)+\left(1+2\right)\)
= \(x^2y^3-10xy+3\)
Không bíc có đúng không nữa
BT13: Cho\(A=16x^4-8x^3y+7x^2y^2-9y^4\),\(B=-15x^4+3x^3y-5x^2y^2-6y^4\) và \(C=5x^3y+3x^2y^2+17y^4+1\)
a, Tính A+B-C
b, Tính A-C+B
\(a,A+B-C=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)+\left(-9y^4-6y^4-17y^4\right)-1\)
\(=x^4-10x^3y-x^2y^2-32y^4-1\)
\(b,A-C+B=A+B-C\) ( giống câu a )
\(a,\)
\(A+B+C\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-9y^4-6y^4-17y^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)-1\)
\(=x^4-32y^4-10x^3y-x^2y^2-1\)
\(b,\)
\(A-C+B=A+B-C=x^4-32y^4-10x^3y-x^2y^2-1\)
a: A+B-C
=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-C
=x^4-5x^3y+2x^2y^2-15y^4-5x^3y-3x^2y^2-17y^4-1
=x^4-10x^3y-x^2y^2-32y^4-1
b: A-C+B=A+B-C=x^4-10x^3y-x^2y^2-32y^4-1
a) 5x+7y chia hết cho 11 chứng tỏ 3x + 2y chia hết cho 11
b) 6x - y chia hết cho 7 chứng tỏ 5x - 2y chia hết cho 7
A=5x+2y ; B=9x+7y
a) Rút gọn 7A-2B
b)CMR nếu các số x,y nguyên tố 5x+2y chia hết cho 17 thì 9x+7y chia hết cho 17
a) 7A-2B= 7.(5x+2y)-2(9x+7y)
=35x+14y-18x-14y
=17x
b) ta có : 7A-2B=17x ( câu a)
mà 7A=7.(5x+2y) chia hết cho 17 (5x+2y chia hết cho 17)
=> 2B = 2(9x+7y) chia hết cho 17
mà 2 không chia hết cho 17 nên 9x+7y chia hết cho 17 ( đpcm)
Câu 4: Kết quả phân tích đa thức 5x2-4x +10xy-8y thành nhân tử là:
A.(5x+4)(x-2y) B.(5x-2y)(x+4y) C. (x+2y)(5x-4) D..(5x-4)(x-2y)
cho các đa thức a= 4x^3-5x^2y+6xy^2-12y^2; b= 6x^3+5x^2y-6xy^2+12y^3. tính a^2-ab-a-a(a-b+2)]-[(a+b+1).b-ab-b^2+2b]
cho A=5x^2y+3xy^2+2yz
B=-5xy^2+2x^2y-2yz+2
Tính A+B bằng 2 cách
Cách 1: Hàng ngang
\(A+B=\left(5x^2y+3xy^2+2yz\right)+\left(-5xy^2+2x^2y-2yz+2\right)\)
\(A+B=5x^2y+3xy^2+2yz-5xy^2+2x^2y-2yz+2\)
\(A+B=\left(5x^2y+2x^2y\right)+\left(3xy^2-5xy^2\right)+\left(2yz-2yz\right)+2\)
\(A+B=7x^2y-2xy^2+2\)
Cách 2: Hàng dọc
\(\begin{matrix}_+A\left(x\right)=5x^2y+3xy^2+2yz\\B\left(x\right)=2x^2y-5xy^2-2yz+2\\\overline{A\left(x\right)+B\left(x\right)=7x^2y-2xy^2+2}\end{matrix}\)
Bạn viết dấu " \(=\) " thẳng hằng với nhau nhá
Cho hai đa thức:
A= 5x^2y^3 - 6xy^4 + 5x^3y-1
B = -x^3y-7x^2y^3 +5 -xy^4
C = 2x^2y^3 - 7 xy^4 -6
Tính A+B+C ; A-B-C
A+B+C
\(=5x^2y^3-6xy^4+5x^3y-1+-x^3y-7x^2y^3+5-xy^4+2x^2y^3-7xy^4-6\)
\(=-14xy^4+4x^3y-2\)
A-B-C
\(=5x^2y^3-6xy^4+5x^3y-1+x^3y+7x^2y^3-5+xy^4-2x^2y^3+7xy^4+6\)
\(=10x^2y^3+2xy^4+6x^3y\)
Cho A= 5x+2y
B=9x+7y
a.Rút gọn 7A-2B
b.Chúng minh:Nếu x,y thuộc Z thỏa mãn 5x+2y chia hết cho 17 thì 9x+7y cũng chiwa hết cho 17
Cho biểu thức A = 5x + 2y và B = 9x + 7y
Chứng minh rằng nếu các số nguyên x, y thoả mãn 5x + 2y chia hết cho 17 thì 9x + 7y cũng
chia hết cho 17.
Vì A chia hết cho 17
=> 7A = 35x + 14y cũng chia hết cho 7
mặt khác ta có 2B = 18x + 14y
Xét 7A - 2B
= 35x + 14y - 18x - 14y
= 17x chia hết cho 17
mà 7A chia hết cho 17
=> 2B phải chia hết cho 17
mà 2 ko chia hết cho 17 => B chia hết cho 17 ( đpcm )