Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nam Joo Hyuk
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2022 lúc 23:07

a: \(A=9\left(9m+3n\right)⋮9\)

b: \(A+B=9\left(9m+3n+4p\right)+57⋮̸9\)

Tran May Mi
Xem chi tiết
Phạm Đức Nam Phương
19 tháng 6 2017 lúc 15:25

Ta có với n chẵn thì giá trị biểu thức trên luôn chẵn

Xét trường hợp n lẻ:

=> n4 lẻ, 6n3 chẵn, 27n2 lẻ, 54n chẵn, 32 chẵn

=> n4 + 6n3 + 272 + 54 + 32 là số chẵn

Vậy, giá trị biểu thức đã cho luôn chẵn với n thuộc Z

Tran May Mi
19 tháng 6 2017 lúc 15:38

còn cách nào khác không nhỉ?

Nguyễn Võ Hoàng Minh Hạn...
Xem chi tiết
Mỹ Duyên
10 tháng 6 2017 lúc 7:43

Đặt D = \(27n^3-45n^2+24n-4\)

<=> D = \(\left(27n^3-9n^2\right)-\left(36n^2-12n\right)+\left(12n-4\right)\)

<=> D = \(9n^2\left(3n-1\right)-12n\left(3n-1\right)+4\left(3n-1\right)\)

<=> D = \(\left(3n-1\right)\left(9n^2-12n+4\right)\)

<=> D = \(\left(3n-1\right)\left(3n-2\right)^2\)

Để D là số nguyên tố => D chỉ có 2 ước là 1 và chính nó

Xét 2 TH

TH1: 3n -1 = 1 và (3n - 2)2 là số nguyên tố

Ta có : 3n -1 = 1 => n = \(\dfrac{2}{3}\)

Thay n = \(\dfrac{2}{3}\) vào ( 3n - 2)2 ta được:

\(\left(3.\dfrac{2}{3}-2\right)^2\) = 0 => Loại vì 0 không phải số nguyên tố (1)

TH2: ( 3n -2 )2 = 1 và 3n -1 là số nguyên tố

Ta có: ( 3n - 2)2 = 1 <=> \(\left[{}\begin{matrix}3n-2=-1\\3n-2=1\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}n=\dfrac{1}{3}\\n=1\end{matrix}\right.\)

Thay n = \(\dfrac{1}{3}\) vào 3n - 1 ta được:

\(3.\dfrac{1}{3}-1\) = 0 => Loại vì 0 không phải số nguyên tố (2)

Thay n = 1 vào 3n - 1 ta được:

\(3.1-1=2\) => TM vì 2 là số nguyên tố (3)

Từ (1); (2); (3) => n = 1 => Có 1 giá trị để thõa mãn đề bài

P/s : You ko xét Th 1 cx chẳng sao vì ( 3n - 2)2 ko bao giờ là số nguyên tố đâu. hjhj. Mk xét cho đẹp mắt thui!

hiếu trân văn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 21:55

Bài 1:

\(M=x^4-x^3-x^3+x^2+2x^2-2x+2\)

\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)

\(=3x^2-3x+6+2\)

\(=3x^2-3x+8\)

\(=3\left(x^2-x\right)+8=3\cdot3+8=17\)

Nguyễn Hoàng Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 9:09

a: \(A=28n^2+27n+5\)

\(=28n^2+20n+7n+5\)

\(=4n\left(7n+5\right)+\left(7n+5\right)\)

\(=\left(4n+1\right)\left(7n+5\right)\)

Nếu n=0 thì \(A=\left(4\cdot0+1\right)\left(7\cdot0+5\right)=1\cdot5=5\) là số nguyên tố

=>Nhận

Khi n>0 thì (4n+1)(7n+5) sẽ là tích của hai số nguyên dương khác 1

=>A=(4n+1)(7n+5) không thể là số nguyên tố

=>Loại

Vậy: n=0

b: \(B=n\left(n^2+n+7\right)-2\left(n^2+n+7\right)\)

\(=\left(n^2+n+7\right)\left(n-2\right)\)

Để B là số nguyên tố thì B>0

=>\(\left(n^2+n+7\right)\left(n-2\right)>0\)

=>n-2>0

=>n>2
\(B=\left(n^2+n+7\right)\left(n-2\right)\)

TH1: n=3

\(B=\left(3^2+3+7\right)\left(3-2\right)=9+3+7=9+10=19\) là số nguyên tố

=>Nhận

TH2: n>3

=>n-2>1 và \(n^2+n+7>1\)

=>\(B=\left(n-2\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1

=>B chắc chắn không thể là số nguyên tố

=>Loại

c: \(C=n\left(n^2+n+7\right)+\left(n^2+n+7\right)\)

\(=\left(n^2+n+7\right)\left(n+1\right)\)

TH1: n=0

=>\(C=\left(0+0+7\right)\left(0+1\right)=7\cdot1=7\) là số nguyên tố

=>Nhận

TH2: n>0

=>n+1>0 và \(n^2+n+7>1\)

=>\(C=\left(n+1\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1

=>C chắc chắn không thể là số nguyên tố

=>Loại

d: \(D=n^2-1=\left(n-1\right)\left(n+1\right)\)

Để D là số nguyên tố thì D>0

=>(n-1)(n+1)>0

TH1: \(\left\{{}\begin{matrix}n-1>0\\n+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}n>1\\n>-1\end{matrix}\right.\)

=>n>1

TH2: \(\left\{{}\begin{matrix}n-1< 0\\n+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}n< 1\\n< -1\end{matrix}\right.\)

=>n<-1

Khi n=2 thì \(D=2^2-1=4-1=3\) là số nguyên tố(nhận)

Khi n>2 thì n-1>1 và n+1>3>1

=>D=(n-1)(n+1) là tích của hai số tự nhiên lớn hơn 1

=>D không là số nguyên tố

=>Loại

Khi n=-2 thì \(D=\left(-2\right)^2-1=4-1=3\) là số nguyên tố

=>Nhận

Khi n<-2 thì n-1<-3 và n+1<-1

=>D=(n-1)(n+1)>0 và D bằng tích của hai số nguyên dương lớn hơn 1

=>D không là số nguyên tố

=>Loại

Ngô Bình
Xem chi tiết
Hồ Huỳnh Như
Xem chi tiết
Phạm Ngọc Thạch
6 tháng 7 2015 lúc 19:44

a) \(\frac{1}{9.27n}=3n\)

=> \(\frac{1}{3^5n}=3n\)

=> \(\frac{1}{n}3^{-5}=3n\)

=> \(\frac{1}{n}:n=3:3^{-5}\)

=> \(n^{-2}=3^{-4}=9^{-2}\)

Vậy n=9

 

Nguyen Hai Linh
Xem chi tiết
Trần Vũ Việt Tùng
Xem chi tiết

A = 3 + 32 + 33 +...+ 32015

A =  (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)

A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )

A = 3.211 +...+ 32011.121

A = 121.( 3 +...+ 32021)

121 ⋮ 121 ⇒ A =  121 .( 3 +...+32021)  ⋮ 121 (đpcm)

b, A              = 3 + 32 + 33 + 34 +...+ 32015

   3A             =       32 + 33 + 34 +...+ 32015 + 32016

3A - A           =   32016 - 3

    2A            = 32016 - 3

      2A    + 3  = 32016 -  3 + 3

      2A    + 3 =  32016 = 27n

       27n = 32016

       (33)n = 32016

        33n = 32016 

           3n =  2016

             n = 2016 : 3

             n = 672

c, A = 3 + 32 + ...+ 32015

    A = 3.( 1 + 3 +...+ 32014)

    3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3

   Mặt khác ta có: A = 3 + 32 +...+ 32015 

                             A =  3 + (32 +...+ 32015)

                             A = 3 + 32.( 1 +...+ 32015)

                             A = 3 + 9.(1 +...+ 32015)

                              9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9 

                                            3 không chia hết cho 9 nên 

                                A không chia hết cho 9, mà A lại chia hết cho 3 

                        Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9