Cho A= \(\frac{20^{102}+1}{20^{101}+1}\); B= \(\frac{20^{101}+1}{20^{100}+1}\). So sánh A và B
So sánh A = \(\frac{20^{102}+1}{20^{101}+1}\) và B = \(\frac{20^{101}+1}{20^{100}+1}\)
áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(A=\frac{20^{102}+1}{20^{101}+1}< \frac{20^{102}+1+19}{20^{101}+1+19}=\frac{20.\left(20^{101}+1\right)}{20.\left(20^{100}+1\right)}=\frac{20^{101}+1}{20^{100}+1}\)
\(\Rightarrow A< B\)
so sánh các phân số sau:
\(\frac{20^{100}-1}{20^{101}-1}\) và \(\frac{20^{101}-1}{20^{102}-1}\)
\(20A=\dfrac{20^{101}-1-19}{20^{101}-1}=1-\dfrac{19}{20^{101}-1}\)
\(20B=\dfrac{20^{102}-1-19}{20^{102}-1}=1-\dfrac{19}{20^{102}-1}\)
mà \(\dfrac{-19}{20^{101}-1}< \dfrac{-19}{20^{102}-1}\)
nên A<B
So sánh 2 phân số sau:
\(\frac{20^{100}-1}{20^{101}-1}\) và \(\frac{20^{101}-1}{20^{102}-1}\)
\(\frac{20^{101}-1}{20^{102}-1}>\frac{20^{101}-20}{20^{102}-20}=\frac{20.\left(20^{100}-1\right)}{20.\left(20^{101}-1\right)}=\frac{20^{100}-1}{20^{101}-1}\)
\(\Rightarrow\frac{20^{101}-1}{20^{102}-1}>\frac{20^{100}-1}{20^{101}-1}\)
Bài 1
a rút gọn B=\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
b Chứng minh A=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{5}{8}\)
B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)= \(\frac{1}{20}\)
vậy B= \(\frac{1}{20}\)
b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8
Vậy A>5/8
Nhớ k mik nha!!!!!!!!!!!!!
a/ Quy đồng mẫu số trong các ngoặc đơn, chúng sẽ giản ước được :\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}=\frac{1}{20}.\)
b/ Chứng minh A> 5/8
\(A=(\frac{1}{101}+...\frac{1}{125})+(\frac{1}{126}+...+\frac{1}{150})+(\frac{1}{151}+...+\frac{1}{175})+\left(\frac{1}{176}+...+\frac{1}{200}\right)\ge.\)
\(\ge\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{6}+\frac{1}{8}\right)=\frac{12}{35}+\frac{7}{24}>\frac{24}{72}+\frac{21}{72}=\frac{45}{72}=\frac{5}{8}\)
So sánh A=\(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{2021}\)và B=20. So sánh A và B
1)
\(Cho:\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh \(B>\frac{7}{12}\)
1)
Cho \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh: \(B>\frac{7}{12}\)
tính nhanh
a, 1-2+3-4+5-6+......+101-102+103
b, 2-4+6-8+10-21+.....+98-100+102
c, 16-18+20-22+.....+64-66+68
\(\frac{10}{11}x\frac{12}{13}:\frac{50}{51}-\frac{19}{20}x\frac{12}{13}:\frac{101}{102}+\frac{99}{100}\)