Cho đa thức A(x) = x4 -3x3 + bx2 +ax + b ; B(x) = x2 -1 . Tìm các hệ số a, b để A(x) ⋮ B(x)
Help me!
a) Cho đa thức f(x) = x4 – 3x3 + bx2 + ax + b ; g(x) = x2 – 1
Tìm các hệ số của a, b để f(x) chia hết cho g(x)
b) Tìm giá trị nhỏ nhất của biểu thức A = x.(2x – 3)
a: f(x) chiahết cho g(x)
=>\(x^4-x^2-3x^3+3x+\left(b+1\right)x^2-\left(b+1\right)+\left(a-3\right)x+2b+1⋮x^2-1\)
=>a-3=0 và 2b+1=0
=>a=3 và b=-1/2
b: A=2x^2-3x
=2(x^2-3/2x)
=2(x^2-2*x*3/4+9/16-9/16)
=2(x-3/4)^2-9/8>=-9/8
Dấu = xảy ra khi x=3/4
Tìm các số nguyên a và b để đa thức A(x)=x4-3x3+ax +b chia hết cho đa thức
B(x)=x2-3x+4
bạn trúc giang sai rồi -4 nhân -3x sao lại bằng -12x
tìm a,b để đa thức : x4 + 3x3 - 17x2 + ax + b chia cho đa thức x2 - 1 dư 2x - 3
mình cần gấpppppppppppppppppppppp, giúp với ạ
Bài 3. Tìm giá trị của a, b để đa thức f(x) chia hết cho đa thức g(x) với
f(x) = x4− 3x3+ 3x2+ ax + b; g(x) = x2− 3x + 4.
\(f\left(x\right)⋮g\left(x\right)\)
\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)
\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)
Cho đa thức f(x) = x 4 – 3 x 3 + 3 x 2 + ax + b và đa thức g(x) = x 2 – 3x + 4. Biết f(x) chia hết cho g(x). Khi đó tích a.b bằng
A. -12
B. 12
C. -6
D. -8
Ta có
Phần dư của phép chia f(x) cho g(x) là R = (a – 3)x + b + 4. Để phép chia trên là phép chia hết thì R = 0, Ɐx
ó (a – 3)x + b + 4 = 0, Ɐx ó a - 3 = 0 b + 4 = 0
ó a = 3 b = - 4 => ab = -12
Đáp án cần chọn là: A
Bài 1: Phân tích đa thức thành nhân tử:
a) x2y+xy+x+1
b) x2-(a+b)x+ab
c) ax2+ay-bx2-by
d) ax-2x-a2+2a
e) 2x2+4ax+x+2a
f) x3+ax2+x+a
g) x4+2x3-4x-4
a) x2y+xy+x+1= (x2y+xy)+(x+1)=xy(x+10+(x+1)=(x+1)(xy+1)
b) x2-(a+b)x+ab=x2-ax-bx+ab=(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)
c) ax2+ay-bx2-by=(ax2+ay)-(bx2+by)=a(x2+y)-b(x2+y)=(a-b)(x2+y)
d) ax-2x-a2+2a=(ax-2x)-(a2-2a)=x(a-2)-a(a-2)=(a-2)(x-a)
e) 2x2+4ax+x+2a=(2x2+4ax)+(x+2a)=2x(x+2a)+(x+2a)=(x+2a)(2x+1)
f) x3+ax2+x+a=(x3+ax2)+(x+a)=x2(x+a)+(x+a)=(x2+1)(x+a)
g: Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
Với giá trị nào của a, b thì đa thức x4 - 3x3 + ax2 + 4x - b chia hết cho đa thức x2 - x + 1
Với giá trị nào của a, b thì đa thức x4 - 3x3 + ax2 + 4x - b chia hết cho đa thức x2 - x + 1
Cho đa thức: f(x)=x4+ax3+bx2+cx+df(x)=x4+ax3+bx2+cx+d ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(9)+f(-5
)
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
Bài 3 (1,75 điểm): Cho hai đa thức: A(x) = 3x6+ 3x3 - 3x3 - 3x6 - x3 + x4 + 2023 B(x) = x3 + x2 -1 a. Thu gọn và sắp xếp đa thức A(x) theo luỹ thừa giảm của biến. b. Tính A(x) + B(x) c. Biết H(x) – A(x) = B(x). Chứng minh đa thức H(x) không có nghiệm Bài 4 (3điểm): Cho ABC vuông tại A. Tia phân giác của góc ABC cắt AC ở D.Kẻ DH BC a. Chứng minh ABD = HBD b. Gọi I là giao điểm của 2 tia BA và HD. Chứng minh IDC cân. c. Chứng minh: AD +AI > 1 2 IC
ét o ét cíu vs mn