Câu 3: Cho ΔABC vuông tại A, đường cao BH, biết AB : AC = 5: 7; AH=15cm. Tính HB; HC
Cho ΔABC vuông tại A đường cao AH biết: BH=9;AC=16.Tính AB,BC,HC,AH
Gọi HC là x (x>0)
Xét \(\Delta ABC\) vuông tại A, đường cao AH:
AC2=HC.BC (ĐL1)
\(\Rightarrow\) AC2=x.(x+BH)
\(\Rightarrow\) 256=x2+9x
\(\Rightarrow\) x2+9x-256=0 (1)
Giải pt (1) ta được x\(\approx\) 12,12
Suy ra HC\(\approx\)12,12
Suy ra BC\(\approx\) 21,12
Suy ra AB\(\approx\) 13,79
Suy ra AH\(\approx\) 10,45
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
cho ΔABc vuông tại A có đường cao AH. Hãy tính độ đài các đoạn thẳng BH,CH,AH,AC nếu biết AB=6cm,BC=10
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8\left(cm\right)\\BH=3,6\left(cm\right)\\CH=6,4\left(cm\right)\end{matrix}\right.\)
Cho ΔABC vuông tại A , đường cao AH ( H∈BC). Biết AC = 8cm, BC =10cm . Tính độ dài các đoạn thẳng AB, BH , CH và AH
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=10^2-8^2=36\)
hay AB=6(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{36}{10}=3.6\left(cm\right)\\CH=\dfrac{64}{10}=6.4\left(cm\right)\\AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\end{matrix}\right.\)
Cho ΔABC vuông tại A, đường cao AH, cho AD là tia phân giác của ∠BAC, cho BD = 4 và CD = 5. Tính AB, AC, BH, CH, AH.
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{5}\)
\(\Leftrightarrow AB=\dfrac{4}{5}AC\)
Ta có: BC=BD+CD
nên BC=4+5
hay BC=9cm
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{41}{25}=9\)
\(\Leftrightarrow AC^2=\dfrac{225}{41}\)
\(\Leftrightarrow AC=\dfrac{15\sqrt{41}}{41}\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{12\sqrt{41}}{41}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{16}{41}\left(cm\right)\\CH=\dfrac{353}{41}\left(cm\right)\\AH=\dfrac{4\sqrt{353}}{41}\left(cm\right)\end{matrix}\right.\)
Cho ΔABC vuông tại B biết: BC=2a; góc A=45°: a) Tính độ dài cạnh AB; AC b) Kẻ BH vuông góc AC. Tính BH=? c) Tính diện tích ΔABC d) Tính chu vi ΔABC e) Tính bán kính đường tròn ngoại tiếp ΔABC
a: ΔBAC vuông tại B có góc A=45 độ
nên ΔBAC vuông cân tại B
=>BA=BC=2a
AC=căn AB^2+BC^2=2a*căn 2
b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2
c: S ABC=1/2*2a*2a=2a^2
d: C=2a+2a+2a*căn 2=4a+2a*căn 2
Cho tam giác ΔABC vuông tại A có AB=6cm,AC=10cm . Đường cao AH a)Chứng minh ΔABC / ΔABH b)Chứng minh AB²=BH.BC c)Tính BC,AH,BH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)
Cho ΔABC cân tại A, đường cao BH. Trên đáy BC lấy M, MD vuông góc AB, ME vuông góc AC, MF vuông góc BH. Chứng minh ΔDMB = ΔFMB
+)Ta có:AC⊥BH(gt)
MF⊥BH(gt)
=>MF//AC
=>∠HCM=∠FMB(đồng vị)(1)
+)ΔABC cân tại A
=>∠DBM=∠HCM(2)
+)Từ (1) và (2)
=>∠DBM=∠FMB
+)Xét ΔDMB(∠BDM=90o) và ΔFMB(∠MFB=90o) có :
BM chung
∠DBM=∠FMB(cmt)
=>ΔDMB=ΔFMB (ch.gn)
Chúc bn học tốt
Ta có:AC⊥BH(gt)
MF⊥BH(gt)
=>MF//AC
=>∠HCM=∠FMB(đồng vị)(1)
+)ΔABC cân tại A
=>∠DBM=∠HCM(2)
+)Từ (1) và (2)
=>∠DBM=∠FMB
+)Xét ΔDMB(∠BDM=90o) và ΔFMB(∠MFB=90o) có :
BM chung
∠DBM=∠FMB(cmt)
=>ΔDMB=ΔFMB (ch.gn)
Cho ΔABC vuông tại A đường cao AH tính các đoạn còn lại nếu biết:
a, BH=9;AC=16
b, AH=48;BC=100
c, AH=6;BC=13
d, AC=15;BH=7
e, AB=12;CH=12.8
f, AB=10;\(\frac{AC}{AB}=\frac{4}{3}\)
f: AC/AB=4/3
nên AC=4/3AB=40/3(cm)
=>BC=50/3(cm)
=>AH=8(cm)
=>BH=6(cm)
=>CH=32/3(cm)
b: BH=36(cm)
CH=64(cm)
AB=60(cm)
AC=80(cm)
Cho ΔABC vuông tại A đường cao AH tính các đoạn còn lại nếu biết:
a, BH=9;AC=16
b, AH=48;BC=100
c, AH=6;BC=13
d, AC=15;BH=7
e, AB=12;CH=12.8