Cho \(\Delta\) ABC có 3 cạnh AB = 6cm ; AC = 8cm và BC = 9cm.
Gọi M là trung điểm AB. Kẻ MN//BC. Gọi H là trung điểm BC.
a) Tính: AN, MN
b) C/minh MH//AC. Tính MH.
c) Tính NH.
Câu 15: (3 điểm). Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính BC
b, Trên cạnh AC lấy G sao cho AG = 2cm, trên tia đối của AB lấy điểm D sao cho AD = AB. Chứng minh rằng: \(\Delta BGC=\Delta DGC\)
c, Chứng minh DG đi qua trung điểm của cạnh BC
Bạn tự vẽ hình nhé
a)
Áp dụng định lý Py-ta-go vào \(\Delta ABC:\)
\(BC^2=AB^2+AC^2\\ \Rightarrow BC^2=8^2+6^2\\ \Rightarrow BC^2=64+36\\ \Rightarrow BC^2=100\\ \Rightarrow BC=10\left(cm\right)\)
b)
Xét \(\Delta BGC\) và \(\Delta DGC\) có:
\(AB=AD\left(GT\right)\\ AG:chung\\ \widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)
\(\Rightarrow\Delta BGC=\Delta DGC\left(c-g-c\right)\)
c)
Xét \(\Delta BCD\) có:
\(AB=AD\left(GT\right)\\ \dfrac{AG}{DG}=\dfrac{2}{6}=\dfrac{1}{3}\Rightarrow\dfrac{CG}{AC}=1-\dfrac{1}{3}=\dfrac{2}{3}\)
=> G là trọng tâm của \(\Delta BCD\)
=> DG là đường trung tuyến của \(\Delta BCD\) ứng với cạnh BC
Hay DG đi qua trung điểm BC
Cho ΔABC ⊥ A. Kẻ phân giác BE (E ∈ AC); EH ⊥ BC (H ∈ BC). Cho AB = 6cm, AC = 8cm. Tính BC và khoảng cách từ I đến 3 cạnh của ΔABC
Cho ΔABC biết EF song song BC( E∈AB)(F∈AC).Biết AE=3cm,EB=6cm,È=8cm,FC=5cm.Tính các cạnh của ΔABC
gọi cạnh AF là x,BC là y
ta có AB=AE+EB=3+6=9cm;
theo định lý Ta Lét đảo ,ta có :
AE/EB=AF/FC hay 3/6 = x/5
<=>3.5=6.x<=>15=6.x<=> x=2,5
=> AC =AF+FC=2,5+5=7,5cm
mặc khác ta có:
AE/AB=EF/BC hay 3/6=8/y
<=>3.y=6.8<=>3.y=48<=>y=16
=>BC=16cm
Cho ΔABC và ΔA'B'C', biết AB=8cm, AC=6cm, BC=10cm. Cạnh lớn nhất của ΔA'B'C' là 25cm. Tính cạnh nhỏ nhất của ΔA'B'C'
Cho tam giác ABC vuông tại A có AB = 8cm; AC = 6cm
a,Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE = 2cm, trên tia đối của tia AB lấy điểm D sao cho AD = AB. C/minh: \(\Delta BEC=\Delta DEC\)
c, C/minh: DE đi qua trung điểm cạnh BC
a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100
=>BC=10
b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C )
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )
c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC
=> DE đi qua trung điểm BC
Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm
a) Tính BC
b) Trên cạnh AC lấy điểm E sao cho AE = 2cm; trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh \(\Delta BEC=\Delta DEC\)
c) Chứng minh DE đi qua trung điểm cạnh BC
b)ta có AB=AD(giả thiết)
=> CA là đường trung tuyến của BD
CA vuông góc với BD (t/g ABC vuông tại A)
=>CA là đường cao của BD
mà CA là đường trung tuyến của BD(chứng minh trên)
=>t/g BCD cân tại C
=>CA cũng là p/g của t/g ABC
=>góc BCA= góc DCA
Xét t/g BEC và t/g DEC
góc BCA= góc DCA
BC=CD(t/g BCD cân tại C)
EC: cạnh chung
Suy ra t/g BEC= t/g DEC(c-g-c)
c) trên trung tuyến CA có CE/AC=6-2/6=2/3
=>ba đường trung tuyến của t/g BCD đồng quy tại E
=>DE là đường trung tuyến của BC
=>DE đi qua trung điểm BC
Cho \(\Delta ABC=\Delta DEH\). Biết AB = 5cm, AC = 6cm, chu vi tam giác DEH bằng 19 cm. Tính độ dài các cạnh của tam giác DEH ?
Vì tam giác ABC = tam giác DEH
=> AB=De
Tam giác ABC = Tam giác DEH (gt)
=> AB = DE (2 cạnh tương ứng) mà AB = 5 (cm) => DE = 5 (cm)
AC = DH (2 cạnh tương ứng) mà AC = 6 (cm) => DH = 6 (cm)
SDEH = 19
DE + DH + EH = 19
5 + 9 + EH = 19
EH = 19 - 9 - 5
EH = 5 (cm)
Cho \(\Delta ABC\)A=90,AB=8cm,AC=6cm
a.Tính BC
b. Trên cạnh AC lấy điểm E sao cho AE=2cm, trên tia đối của tia AB lấy điểm D sao cho AD=AB. C/m \(\Delta BEC=\Delta DEC\)
c.C/m DE đi qua trung điểm cạnh BC
Cho \(\Delta\) ABC có AB = 6cm ; AC = 8cm và BC = 10cm. Lấy D bất kì trên AB, kẻ DE sao cho DE // AB (E \(\in\) AC) . Xác định ví trí của D trên cạnh AB sao cho BD + EC = DE.