vẽ hai đường tròn(A;3 cm) và (b;2cm) cắt nhau tại C và D; AB=4cm. Đường tròn tâm A;B lần lượt cắt đoạn thẳng AB tại I;K.
a Tính CA,CB,DA,DB.
b, K có phải là trung điểm của đoạn thẳng AB không.
c, Tính IK
Từ một điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB đến đường tròn (A, B là hai tiếp điểm). Qua A Vẽ đường thẳng song song với MB, cắt đường tròn tại E; đoạn thẳng ME cắt đường tròn tại F. Hai đường thẳng AF và MB cắt nhau tại I. Chứng minh tứ giác ABCD nội tiếp đường tròn.
Bạn xem lại đề giúp mình nha, vì đề ko có dữ kiện nào liên quan tới điểm C,D hết
Vẽ theo yêu cầu đầu bài.
+ Vẽ đoạn AB = 6 cm.
+ Vẽ đường tròn (A; 3cm).
+ Vẽ đường tròn (B; 4cm).
+ Đường tròn (A; 3cm) cắt đường tròn (B; 4cm) tại hai điểm C và D.
+ Tính chu vi tam giác ABC và tam giác ADB.
Từ một điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB với đường tròn (A,B là hai tiếp điểm). Qua A vẽ đường thẳng song song với MB và cắt đường tròn tại C ;đoạn thẳng MC cắt đường tròn tại D. Hai đường thẳng AD và MB cắt nhau tại E.
a) CMR: tứ giác MAOB nội tiếp
b) CMR: ∆MED ~ ∆AEM. Từ đó suy ra ME²=ED.AE
c) chứng minh E là trung điểm của đoạn MB
Cho đường tròn (O;R)và điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB,AC của đường tròn (O)(B,C là hai tiếp điểm). Vẽ cát tuyến ADE của đường tròn (O) (D, E thuộc đường tròn (O); D nằm giữa A và E, tia AD nằm giữa hai tia AB,AO). Gọi I là trung điểm của DE và H là giao điểm của AO và BC.
Chứng minh : góc EHO = góc EDO
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
=>AH*AO=AB^2
Xet ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE=AH*AO
=>AD/AO=AH/AE
=>ΔADH đồng dạng với ΔAOE
=>góc ADH=góc AOE
=>góc DHO+góc DEO=180 độ
=>DEOH nội tiếp
=>góc EHO=góc EDO
+/ Vẽ hình AB = 6cm +/ Vẽ đường tròn (A,3cm) +/ Vẽ đường tròn (B,4cm). Hai đường tròn cắt nhau tại C,D.Tính chu vi ABC và ABD
Vì C; D thuộc (A; 3 cm) => AC = AD = 3 cm
Vì C; D thuộc (B; 4 cm) => BC = BD = 4 cm
Chu vi tam giác ACB là : AC + CB + BA = 3 + 4 + 6 = 13 cm
Chu vi tam giác ADB là AD + DB + BA = 3 + 4 + 6 = 13 cm
Vẽ đoạn thẳng AB = 4cm. Vẽ đường tròn tâm A = 3cm và đường tròn tâm B = 2cm. Hai đường tròn này cắt nhau tại hai điểm C và D. Tính AC; BC
Bài 4: Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Vẽ đường kính BD của đường tròn (O) a) Chứng minh: OA BC và DC // OA. b) Đường thẳng AD cắt (O) tại điểm thứ hai là E. Chứng minh: AE.AD = AC2
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA⊥BC
vẽ đường tròn tâm O, bán kính 2cm. Lấy điểm A trên đường tròn ấy. Vẽ đường tròn tâm O bán kính 2cm. Hai đường tròn trên cắt nhau tại C và D. Vẽ đường tròn tâm C, bán kính 2cm
a) vì sao đường tròn (A;2cm) đi qua O
b) vì sao đường tròn (C;2cm) đi qua O,A
a. vì AO =2cm nên đường tròn (A,2cm) đi qua O
b, vì CO=CA=2cm nên đường tròn (C,2cm) đi qua A và O
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyển AB, AC của đường tròn (O) với B và C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt đường tròn (0) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm ED. a/ Chứng minh A, B, O, K, C nằm trên đường tròn b/ Chứng minh AE. AD= AC.AC c/ Vẽ OK cắt BC tại F. Chứng minh FD là tiếp tuyển của đường tròn (O).
a: ΔODE cân tại O
mà OK là trung tuyến
nên OK vuông góc DE
góc OKA=góc OBA=góc OCA=90 độ
=>O,K,C,A,B cùng thuộc 1 đường tròn
b: Xét ΔACE và ΔADC có
góc ACE=góc ADC
góc CAE chung
=>ΔACE đồng dạng với ΔADC
=>AC/AD=AE/AC
=>AC^2=AD*AE
c: Xét ΔOKA vuông tại K và ΔOHF vuông tại H có
góc O chung
=>ΔOKA đồng dạng với ΔOHF
=>OK/OH=OA/OF
=>OK*OF=OH*OA=OE^2=OD^2
=>FD là tiếp tuyến của (O)
Cho hình vẽ bên có hai đường tròn (O; 3cm) và ( O 1 ; 3cm). Điểm O 1 nằm trên đường tròn tâm O.
a) Vẽ đường tròn tâm A, bán kính 3cm.
b) Vì sao đường tròn (A; 3cm) đi qua O và O 1 ?
a) HS tự vẽ hình.
b) Đường tròn (A; 3cm) đi qua O và O1 vì OA = O 1 A = 3 cm.