Tam giác vuông tại A: góc C = 30⁰ ; AB = 12cm. Tính AC, BC
Câu 4: a, Giải tam giác ABC vuông tại B. Biết góc A = 30°,AC= 10cm. b, Giải tam giác ABC vuông tại C. Biết góc B = 30°,AC =5cm
b: AB=10cm
\(BC=5\sqrt{3}\left(cm\right)\)
\(\widehat{C}=60^0\)
Cho tam giác aBC vuông tại A , Có góc C =30' . tia phân giác của góc B cắt tại AC tại D . Vẽ DE vuông góc với BC tại E . Qua điểm C vẽ đường thẳng vuông góc với tia BD tại H .
a. Chứng minh : tam giác ABD= tam giác EBD
b. Tính góc DBC và chứng minh : DB=DC
c. So Sánh : HC và HD
a: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: \(\widehat{DBC}=\dfrac{60^0}{2}=30^0\)
Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)
nên ΔDBC cân tại D
cho tam giác ABC vuông tại A , góc C = 30 độ kẻ AH vuông góc BC tại H . Trên HC lấy D sao cho HD=HB. Từ C kẻ CE vuông góc AD tại E ( E thuộc AD)
a) CM: tam giác ABD là tam giác đều
b) CM: EH || AC
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}+30^0=90^0\)
=>\(\widehat{ABC}=60^0\)
Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
Xét ΔABD cân tại A có \(\widehat{B}=60^0\)
nên ΔABD đều
b: ΔABD đều
=>\(\widehat{BAD}=60^0\)
\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)
=>\(\widehat{CAD}+60^0=90^0\)
=>\(\widehat{CAD}=30^0\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
\(\widehat{HDA}=\widehat{EDC}\)
Do đó: ΔDHA=ΔDEC
=>DE=DH
Xét ΔDEH và ΔDAC có
\(\dfrac{DE}{DA}=\dfrac{DH}{DC}\)(DE=DH; DA=DC)
\(\widehat{EDH}=\widehat{ADC}\)
Do đó: ΔDEH đồng dạng với ΔDAC
=>\(\widehat{DEH}=\widehat{DAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EH//AC
Cho tam giác abc vuông tại a,bc=5cm,°C=30° a)giải tam giác vuông ABC. b)tính đường cao AH c)kẻ HE vuông góc AB TẠI E VÀ HF VUÔNG GÓC AC TẠI F CM :AH\3=BE.CF.BC cần gấp
Câu 15:
a: ĐKXĐ: x>=0; x<>1
Cho tam giác ABC vuông tại A có góc C bằng 30° tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc tại E. a)Chứng minh ∆ABD=∆EBD b) Chứng minh tam giác ABE là tam giác đều c) Chứng minh BD=DC GIÚP MÌNH VỚI
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBAE có BA=BE và góc ABE=60 độ
nên ΔBAE đều
c: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
Cho tam giác ABC vuông tại A, có góc ACB = 30 độ, đường vuông góc kẻ từ A cắt BC tại H. Trên đoạn HC LẤY ĐIỂM D sao cho HD=HB câu a/ chứng minh tam giác AHB=tam giác AHD câu b/ chứng minh tam giác ABD là tam giác đều câu c/ từ C kẻ CE vuông góc với AD, (E thuộc AD). Chứng minh DE=HB câu d/ kẻ DF vuông góc với AC, (F thuộc AC); gọi I là giao điểm của CE và AH. Chứng minh: I, D, F thẳng hàng.
ho tam giác abc vuông tại a, có góc acb = 30 độ, đường vuông góc kẻ từ a cắt bc tại h. trên đoạn hc lấy điểm d sao cho hd=hb câu a/ chứng minh tam giác ahb=tam giác ahd câu b/ chứng minh tam giác abd là tam giác đều câu c/ từ c kẻ ce vuông góc với ad, (e thuộc ad). chứng minh de=hb câu d/ kẻ df vuông góc với ac, (f thuộc ac); gọi i là giao điểm của ce và ah. chứng minh: i, d, f thẳng hàng.
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều
Cho tam giác ABC vuông tại A có góc C=30 độ. Vẽ đường phân giác góc B cắt AC tại M. Từ M kẻ ME vuông góc BC (E Thuộc BC)
a. Chứng minh tam giác ABM= tam giác EBM
b. Chứng Minh tam giác ABE là tam giác đều
a/ Xét tam giác ABM và tam giác EBM:
+ ^A = ^AEB ( = 90o)
+ BM chung
+ ^ABM = ^EBM ( do BM là phân giác ^B)
=> Tam giác ABM = Tam giác EBM (ch - gn)
b/ Ta có: ^A = ^B + ^C = 90o (do tam giác ABC vuông tại A)
Mà ^C = 30o (gt)
=> ^B = 60o
Tam giác ABM = Tam giác EBM (cmt)
=> AB = EB (cặp cạnh tương ứng)
=> Tam giác ABE cân tại B
Lại có: ^B = 60o (cmt)
=> Tam giác ABE đều
Cho tam giác ABC vuông tại A có góc C bằng 30°,tia phân giác của góc B cắt AC tại D,kẻ DE vuông góc BC tại E. a) Chứng minh ∆ABD=∆EBD b)Chứng minh tam giác ABE là tam giác đều. c)Chứng minh BD=DC GIÚP MÌNH VỚI Ạ
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )
a) Xét `∆ABD` và `∆EBD` ta có :
`BD` chung
`hat (BAD) = hat (BED) ( = 90^o)`
`hat(ABD) = hat (EBD)`
`=> ∆ABD=∆EBD ( ch-gn)`
b) Xét tam giác vuông `ABC` ta có :
`Hat A = 90 độ, hatC = 30 độ`
Mà `hat (A) + hat (C) + hat (B) = 180^o`
`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`
Xét tam giác ABE ta có :
`BA = BE ( vì ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B
Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )
Cho tam giác ABC vuông tại A. Giải tam giác vuông ABC trong các trường hợp sau:
a) BC = 10cm,góc C= 30 độ. b) AB=8cm và góc B=30 độ ?
a: \(\widehat{B}=90^0-30^0=60^0\)
XétΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
nên AB=5cm
=>\(AC=5\sqrt{3}\left(cm\right)\)
b: \(\widehat{C}=90^0-30^0=60^0\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
hay \(BC=16\sqrt{3}\left(cm\right)\)
=>\(AC=8\sqrt{3}\left(cm\right)\)