Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hiếu
Xem chi tiết
An Thy
9 tháng 6 2021 lúc 10:18

1) Trong (O) có CD là dây cung không đi qua (O) và H là trung điểm CD

\(\Rightarrow OH\bot CD\Rightarrow\angle OHI=90=\angle OAI\Rightarrow OHAI\) nội tiếp

Ta có: \(\angle OAI+\angle OBI=90+90=180\Rightarrow OAIB\) nội tiếp 

\(\Rightarrow O,H,A,B,I\) cùng thuộc 1 đường tròn

2) Vì IA,IB là tiếp tuyến \(\Rightarrow IB=IA=OA=OB\Rightarrow AOBI\) là hình thoi

có \(\angle OAI=90\Rightarrow AOBI\) là hình vuông

AB cắt OI tại E.Dễ chứng minh được E là trung điểm AB

Ta có: \(AB=\sqrt{OA^2+OB^2}=\sqrt{2}R\Rightarrow AE=\dfrac{\sqrt{2}}{2}R\)

\(\Rightarrow\) bán kính của (AOBI) là \(\dfrac{\sqrt{2}}{2}R\)

\(\Rightarrow\) diện tích của (AOBI) là \(\left(\dfrac{\sqrt{2}}{2}R\right)^2.\pi=\dfrac{1}{2}\pi R^2\)

3) OH cắt AB tại F

Ta có: \(\angle IEF=\angle IHF=90\Rightarrow IEHF\) nội tiếp

\(\Rightarrow OH.OF=OE.OI\) (cái này chỉ là đồng dạng thôi,bạn tự chứng minh nha)

mà \(OE.OI=OB^2=R^2\Rightarrow OF=\dfrac{R^2}{OH}\)

mà H cố định \(\Rightarrow\) F cố định \(\Rightarrow AB\) đi qua điểm F cố định undefined

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 11:02

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2018 lúc 9:25

Đáp án C

Chọn hệ tọa độ Oxy như hình vẽ với  O 3 ≡ O , O 2 C ≡ O x , O 2 A ≡ O y .

Ta có 

O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4 ⇒ O 1 − 4 ; 0 .

Phương trình đường tròn  O 1 : x + 4 2 + y 2 = 25.

Phương trình đường tròn  O 2 : x 2 + y 2 = 9.

Kí hiệu H 1  là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9,  trục Oy: x = 0  khi x ≥ 0 .

Kí hiệu H 2  là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9,  trục Oy: x=0 khi x ≥ 0 .

Khi đó thể tích V cần tìm chíình bằng thể tích   V 2 của khối tròn xoay thu được khi quay hình H 2  xung quanh trục Ox (thể tích nửa khối cầu bán kính bằng 3) trừ đi thể tích  V 1  của khối tròn xoay thu được khi quay hình  H 1  xung quanh trục Ox.

Ta có V 2 = 1 2 . 4 3 π 3 3 = 18 π  (đvtt);

V 1 = π ∫ 0 1 y 2 d x = π ∫ 0 1 25 − x + 4 2 d x = 14 π 3  (đvtt).

 Vậy V = V 2 − V 1 = 18 π − 14 π 3 = 40 π 3  (đvtt).  

Nguyễn Thị Trúc Chi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 7 2019 lúc 17:33

Chọn đáp án D.

Gia Bảo Đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2023 lúc 20:30

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC
nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2

Xet ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

=>AD/AO=AH/AE

=>ΔADH đồng dạng với ΔAOE
=>góc ADH=góc AOE

=>góc DHO+góc DEO=180 độ

=>DEOH nội tiếp

=>góc EHO=góc EDO

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 18:53

a: Xét tứ giác ACMO có

\(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\)

=>ACMO là tứ giác nội tiếp

=>A,C,M,O cùng thuộc một đường tròn

b: Xét (O) có

CA,CM là các tiếp tuyến

Do đó: CA=CM và OC là phân giác của góc AOM

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

OC là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOC}\)

Ta có: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{AOM}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=MC\cdot MD\)

mà MC=CA và MD=DB

nên \(AC\cdot BD=OM=R^2\) không đổi

c: Gọi N là trung điểm của CD

Xét hình thang ACDB(AC//DB) có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ABDC

=>ON//AC//BD

=>ON\(\perp\)AB

Vì ΔCOD vuông tại O có N là trung điểm của CD

nên N là tâm đường tròn ngoại tiếp ΔCOD

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó: AB là tiếp tuyến của (N)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔCOD

Anh Quynh
Xem chi tiết
NGUYEN THANH NHAN
Xem chi tiết
NGUYEN THANH NHAN
30 tháng 5 2022 lúc 8:03

Dạ em chưa hiểu ạ

 

NGUYEN THANH NHAN
30 tháng 5 2022 lúc 8:05

Câu này còn 1 ý nữa, nên ý trên em không ra, em không biết giải ý dưới thế nào ạ!

b)  Một mặt phẳng vuông góc với đường thẳng e cắt d, delta, e lần lượt ở A1, M1, B1. Chứng minh rằng tam giác A1M1B1 là vuông.

cô mon
30 tháng 5 2022 lúc 9:33

Áp dụng công thức là ra nha em!

Big City Boy
Xem chi tiết