Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Quỳnh Anh
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 5 2019 lúc 13:14

Để học tốt Toán 9 | Giải bài tập Toán 9

Giả sử vị trí các điểm theo thứ tự là A, C, B, D.

Kẻ OH ⊥ CD. Theo tính chất đường kính vuông góc với một dây ta có:

    HA = HB, HC = HD

Nên AC = HA – HC = HB – HD = BD

Vậy AC = BD.

(Trường hợp vị trí các điểm theo thứ tự là A, D, C, B chứng minh tương tự.)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 9 2017 lúc 3:00

Để học tốt Toán 9 | Giải bài tập Toán 9

Giả sử vị trí các điểm theo thứ tự là A, C, B, D.

Kẻ OH ⊥ CD. Theo tính chất đường kính vuông góc với một dây ta có:

    HA = HB, HC = HD

Nên AC = HA – HC = HB – HD = BD

Vậy AC = BD.

(Trường hợp vị trí các điểm theo thứ tự là A, D, C, B chứng minh tương tự.)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 11:02

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2018 lúc 9:25

Đáp án C

Chọn hệ tọa độ Oxy như hình vẽ với  O 3 ≡ O , O 2 C ≡ O x , O 2 A ≡ O y .

Ta có 

O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4 ⇒ O 1 − 4 ; 0 .

Phương trình đường tròn  O 1 : x + 4 2 + y 2 = 25.

Phương trình đường tròn  O 2 : x 2 + y 2 = 9.

Kí hiệu H 1  là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9,  trục Oy: x = 0  khi x ≥ 0 .

Kí hiệu H 2  là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9,  trục Oy: x=0 khi x ≥ 0 .

Khi đó thể tích V cần tìm chíình bằng thể tích   V 2 của khối tròn xoay thu được khi quay hình H 2  xung quanh trục Ox (thể tích nửa khối cầu bán kính bằng 3) trừ đi thể tích  V 1  của khối tròn xoay thu được khi quay hình  H 1  xung quanh trục Ox.

Ta có V 2 = 1 2 . 4 3 π 3 3 = 18 π  (đvtt);

V 1 = π ∫ 0 1 y 2 d x = π ∫ 0 1 25 − x + 4 2 d x = 14 π 3  (đvtt).

 Vậy V = V 2 − V 1 = 18 π − 14 π 3 = 40 π 3  (đvtt).  

Nguyễn Hoàng Tuệ Tâm
Xem chi tiết
Trần Hiếu
Xem chi tiết
An Thy
9 tháng 6 2021 lúc 10:18

1) Trong (O) có CD là dây cung không đi qua (O) và H là trung điểm CD

\(\Rightarrow OH\bot CD\Rightarrow\angle OHI=90=\angle OAI\Rightarrow OHAI\) nội tiếp

Ta có: \(\angle OAI+\angle OBI=90+90=180\Rightarrow OAIB\) nội tiếp 

\(\Rightarrow O,H,A,B,I\) cùng thuộc 1 đường tròn

2) Vì IA,IB là tiếp tuyến \(\Rightarrow IB=IA=OA=OB\Rightarrow AOBI\) là hình thoi

có \(\angle OAI=90\Rightarrow AOBI\) là hình vuông

AB cắt OI tại E.Dễ chứng minh được E là trung điểm AB

Ta có: \(AB=\sqrt{OA^2+OB^2}=\sqrt{2}R\Rightarrow AE=\dfrac{\sqrt{2}}{2}R\)

\(\Rightarrow\) bán kính của (AOBI) là \(\dfrac{\sqrt{2}}{2}R\)

\(\Rightarrow\) diện tích của (AOBI) là \(\left(\dfrac{\sqrt{2}}{2}R\right)^2.\pi=\dfrac{1}{2}\pi R^2\)

3) OH cắt AB tại F

Ta có: \(\angle IEF=\angle IHF=90\Rightarrow IEHF\) nội tiếp

\(\Rightarrow OH.OF=OE.OI\) (cái này chỉ là đồng dạng thôi,bạn tự chứng minh nha)

mà \(OE.OI=OB^2=R^2\Rightarrow OF=\dfrac{R^2}{OH}\)

mà H cố định \(\Rightarrow\) F cố định \(\Rightarrow AB\) đi qua điểm F cố định undefined

 

Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
25 tháng 4 2017 lúc 11:54

Hướng dẫn giải:

Vẽ OM⊥ABOM⊥AB.

Theo tính chất đường kính vuông góc với một dây ta được MA=MB và MC=MD.

Từ đó suy ra AC=BD.

Nhận xét. Kết luận bài toán vẫn được giữ nguyên nếu C và D đổi chỗ cho nhau.

Nguyễn Đức An
Xem chi tiết