8.a2b + c.deb vậy d = ? 2 ; 0 ; 3 ; 1
a.bc x10 = 5.2 x 10 + 9.3 Vậy b = ?
Tìm a, b, c, d, e biết 8,a2b + c,deb = a,97c
tìm ab biết :
ab x 8 + 24 = a2b
ab*8+24=a*2*b
ab8+24=ab2
ab8-ab2=-24
ab6=-24
ab=-4
vậy ab=-4
Viết các biểu thức dưới dạng bình phương của 1 tổng hoặc 1 hiệu :
\(\dfrac{8}{27}\)a3 - \(\dfrac{8}{3}\)a2b + 8b2a - 8b3
xl chuyển hộ mk "bình phương" thành "lập phương" nha
\(=\left(\dfrac{2}{3}a\right)^3-3.\left(\dfrac{2}{3}\right)^2a^2.2b+3.\dfrac{2}{3}a.4b^2-\left(2b\right)^3=\left(\dfrac{2}{3}a-2b\right)^3\)
Với a = 4; b = 5 thì tích a2b bằng:
A. 80 B. 40 C. 11 D. 10
Bài 1: (2 điểm) Phân tích các đa thức sau thành nhân tử
a) a3 – a2c + a2b – abc C,x2 + 1)2 – 4x2
b) x2 – 10x – 9y2 + 25 D, 4x2 – 36x + 56
giúp mik vs ạ ^^
\(a,a^2\left(a-b\right)+ab\left(a-c\right)=a\left(a+b\right)\left(a-c\right)\\ c,=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ b,=\left(x-5\right)^2-9y^2=\left(x-5-3y\right)\left(x-5+3y\right)\\ d,=4\left(x^2-9x+14\right)=4\left(x-7\right)\left(x-2\right)\)
Cho log a b = 2 . Tính log a / b ( a 2 b )
A.
B. -2
C. -4
D.
Cho a, b, c, d là các số thực thỏa mãn 0 ≤ a, b, c ≤ 1. Tìm giá trị lớn nhất của biểu thức T = 2( a3 + b3 + c3 ) – ( a2b + b2c + c2a ).
Do \(0\le a,b,c\le1\)
nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)
Ta cũng có:
\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)
Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)
\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)
\(=3\)
Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)
Find the value of a if 8,a2b + c,deb = a,97c
Answer : a = .........
AI NHANH THÌ MÌNH TICK CHO !
Biết l i m x → 0 3 x 2 + 2 - 2 - 2 x x = a 2 b ( a b tối giản). Giá trị của a + b bằng:
A. - 1 2
B. 3
C. 1 2
D. 2