Cho hình vuông ABCD có M thuộc AB; N là trung điểm của DM. trên cạnh BC lấy điểm E sao cho BE = BM . Gọi I là trung điểm của AB.
cmr: AE vuông góc với NI
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hình thang vuông ABCD có AB=AD ; BD vuông góc với BC M thuộc AB , kẻ Mx vuông góc với MD , Mx cắt BC tại E
Cho hình chữ nhật ABCD có AB=12,AD=5.Lấy M thuộc BD, kẻ MK vuông góc vs AB, ME vuông góc vs AD.C/m MB.MD=EA+ED.KA.KB.
Cho hình thoi ABCD có hai đường chéo cắt nhau tại H . Biết AC = 4 cm BD = 3 cm . a/Tính cạnh của hình thoi . b/Kẻ HI vuông góc với AB ,I thuộc AB .Tính HI? c/Kẻ DM vuông góc với AB M thuộc AB .Tính DM ?
Cho hình thoi ABCD có hai đường chéo cắt nhau tại H . Biết AC = 4 cm BD = 3 cm . a/Tính cạnh của hình thoi . b/Kẻ HI vuông góc với AB ,I thuộc AB .Tính HI? c/Kẻ DM vuông góc với AB M thuộc AB .Tính DM ?
Cho hình thoi ABCD có hai đường chéo cắt nhau tại H . Biết AC = 4 cm BD = 3 cm . a/Tính cạnh của hình thoi . b/Kẻ HI vuông góc với AB ,I thuộc AB .Tính HI? c/Kẻ DM vuông góc với AB M thuộc AB .Tính DM ?
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại E. Lấy I thuộc cạnh AB, M thuộc cạnh BC sao cho \(\widehat{IEM}=90^o\) ( I và M không trùng với các đỉnh của hình vuông).
a) C/m 4 điểm B,I,E,M cùng thuộc 1 đường tròn.
b) Tính \(\widehat{IME}\)c) Gọi N là giao điểm của tia AM và tia DC. K là giao điểm của tia BN và tia EM. C/m \(CK\perp BN\)
a) Xét tứ giác BIEM có
\(\widehat{IBM}\) và \(\widehat{IEM}\) là hai góc đối
\(\widehat{IBM}+\widehat{IEM}=180^0\)(\(90^0+90^0=180^0\))
Do đó: BIEM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
⇔B,I,E,M cùng thuộc 1 đường tròn(đpcm)
b) Ta có: ABCD là hình vuông(gt)
nên BD là tia phân giác của \(\widehat{ABC}\)(Định lí hình vuông)
⇔BE là tia phân giác của \(\widehat{ABC}\)
⇔\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)
hay \(\widehat{IBE}=45^0\)
Ta có: BIEM là tứ giác nội tiếp(cmt)
nên \(\widehat{IBE}=\widehat{IME}\)(Định lí)
mà \(\widehat{IBE}=45^0\)(cmt)
nên \(\widehat{IME}=45^0\)
Vậy: \(\widehat{IME}=45^0\)
cho hình vuông ABCD. Lấy điểm N thuộc AB, lấy điểm M thuộc AB. AH vuông góc với BN. CMR: MH vuông góc với HC
Cho hình vuông ABCD. Lấy M thuộc AB và N thuộc BC sao cho BN = BM. Gọi H là hình chiếu vuông góc của B lên CM. CMR góc DHN= 90 độ.
Bài 1 : Cho hình vuông ABCD có E ,F là TĐ AB ,AC
a) CM: CE vuông với DF
b) Gọi DF cắt CE tại M . CM AM = AB
Bài 2:Cho hình vuông ABCD . Qua M thuộc đường chéo AC , Kẻ ME vuông với AD ; MF vuông CD . CMR:
a) BE vuông với AF
b) BM vuông với EF
c) BM , AF , CE đồng quy
Hình vuông ABCD. BD nằm trên đường thẳng \(x+y-3=0\). M thuộc AB, N(2;-2) thuộc AD tìm tọa độ đỉnh hình vuông biết B có hoành độ dương