Diện tích hình phẳng giới hạn bởi các đường y = x 3 ; y = - x ; x = 1
A. 4
B. 3 4
C. 1 4
D. 1
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Diện tích miền hình phẳng giới hạn bởi các đường y = 2 x , y = -x+3, y = 1 bằng
A. .
B. .
C. .
D. .
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x), y=0, x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0, x=a bằng:
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x),y=0,x=0,x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0,x=a bằng
A. S/4.
B. 4S.
C. 2S.
D. S/2.
Tính diện tích hình phẳng giới hạn bởi các đường : y= x3- x và y= x- x2
A.12/9
B. 37/12
C.32/7
D.25/8
Đồ thị hàm số y = x3 - x; y = x - x2 .Đặt f1(x) = x3 - x, f2(x) = x - x2
Ta có f1(x) - f2(x) = 0 <=> x3 + x2 - 2x = 0 có 3 nghiệm x = -2; x = 0 ; x = 1
Vậy : Diện tích hình phẳng đã cho là :
= 37 12
Tính diện tích hình phẳng được giới hạn bởi các đường x = y 2 ; y = x 3 ; y = x
A . 1 2
B . 1 4
C . 2 3
D . 1 3
Diện tích hình phẳng giới hạn bởi các đường y = x 3 + 11 x - 6 , y = 6 x 2 , x = 0, x = 2. (Đơn vị diện tích)
A. 4 3
B. 5 2
C. 8 3
D. 18 23
Chọn B.
Đặt h x = x 3 + 11 x - 6 - 6 x 2 = x 3 - 6 x 2 + 11 x - 6 h x = 0 ⇔ x = 1 ∨ x = 2 ∨ x = 3 ( l o ạ i )
Bảng xét dấu
Cho hình phẳng (H) giới hạn bởi các đường y = xlnx , trục hoành, đường thẳng x = 1 2 . Tính diện tích hình phẳng (H).
A. 1 16 − 1 8 ln 2
B. 3 16 − 1 8 ln 2
C. 3 16 + 1 8 ln 2
D. 1 8 3 − ln 2
Đáp án B
Điều kiện: x > 0
Phương trình hoành độ giao điểm của đồ thị hàm số y=x.lnx và trục hoành là
Cho hình phẳng H giới hạn bởi các đường y = x ln x , trục hoành, đường thẳng x = 1 2 . Tính diện tích hình phẳng H .
A. 1 8 3 - ln 2
B. 3 16 - 1 8 ln 2
C. 3 16 + 1 8 ln 2
D. 1 16 - 1 8 ln 2
Đáp án B
Điều kiện: x > 0
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là