Cho hình lăng trụ tam giác đều ABC. A'B'C' có A B = a ; A A ' = 2 a . Góc giữa hai đường thẳng AB' và BC' bằng
A. 60 °
B. 45 °
C. 90 °
D. 30 °
Cho hình lăng trụ tam giác đều ABC. A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 600, cạnh AB=a. Tính thể tích V của khối lăng trụ ABC. A'B'C'.
A. V = 3 4 a 3
B. V = 3 4 a 3
C. V = 3 3 a 3 8
D. V = 3 a 3
Chọn C
Gọi M là trung điểm của BC
=> AM ⊥ BC (1)
Ta có B C ⊥ A M B C ⊥ A A ' ⇒ B C ⊥ A ' M ( 2 )
Mặt khác A B C ∩ A ' B C = B C ( 3 )
Cho hình lăng trụ ABC. A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A’ lên (ABC) trùng với tâm O của tam giác ABC, thể tích của khối lăng trụ ABC. A'B'C' bằng 3 a 3 . Tính khoảng cách h giữa hai đường thẳng AA' và BC
A. h = a
B. h = 7 a 6
C. h = 6 a 7
D. h = a 3 2
Cho hình lăng trụ đứng ABC. A'B'C', biết đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A'BC) bằng a 6 . Tính thể tích khối lăng trụ ABC. A'B'C'.
A. 3 a 3 2 8
B. 3 a 3 2 28
C. 3 a 3 2 4
D. 3 a 3 2 16
Chọn D
Diện tích đáy là B = S ∆ A B C = a 2 3 4 .
Chiều cao là h = d((ABC); (A'B'C')) = AA'
Do tam giác ABC là tam giác đều nên O là trọng tâm của tam giác ABC. Gọi I là trung điểm của BC, H là hình chiếu vuông góc của A lên A'I ta có:
Xét tam giác A'AI vuông tại A ta có:
Cho hình lăng trụ ABC. A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng a 3 4 . Tính theo a thể tích V của khối lăng trụ ABC. A'B'C'.
A. a 3 3 6
B. a 3 3 12
C. a 3 3 3
D. a 3 3 24
Chọn B
Ta có A ' G ⊥ A B C nên A ' G ⊥ B C ; B C ⊥ A M ⇒ B C ⊥ M A A '
Kẻ M I ⊥ A A ' ; B C ⊥ I M nên d A A ' ; B C = I M = a 3 4
Kẻ G H ⊥ A A ' , ta có
Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A'BC) bằng a 6 . Thể tích khối lăng trụ bằng
A. 3 a 3 2 4
B. 3 a 3 2 8
C. 3 a 3 2 28
D. 3 a 3 2 16
Chọn D
Gọi M là trung điểm của BC và H là hình chiếu của A trên A'M.
Ta có :
(do tính chất trọng tâm).
Xét tam giác vuông A'AM :
Suy ra thể tích lăng trụ ABC. A'B'C' là:
Cho khối lăng trụ ABC A'B'C' có đáy là tam giác đều cạnh a, điểm A' cách đều ba điểm A, B, C. Cạnh bên AA' tạo với mặt phẳng đáy một góc 60°. Thể tích khối lăng trụ ABC A'B'C' là
A. a 3 3
B. a 3 3 2
C. a 3 3 6
D. a 3 3 4
Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu của A' xuống (ABC) là tâm O đường tròn ngoại tiếp tam giác ABC biết AA' hợp với đáy ABC một góc 60 ° . Tính thể tích lăng trụ
A. 3 a 3 3 4
B. a 3 3 4
C. a 3 12
D. a 3 2
Đáp án B
Ta có: S đ = a 2 3 4 ; O A = 2 3 A H = a 3 3
Mặt khác AA' hợp với đáy ABC một góc 60 ∘
nên A ' O H ⏜ = 60 ∘ suy ra A ' H = O A tan 60 ∘ = a .
Suy ra V A B C . A ' B ' C ' = S đ h = a 3 3 4
Cho lăng trụ tam giác đều ABC A'B'C' cạnh đáy a=4 biết diện tích tam giác A'BC bằng 8. Thể tích khối lăng trụ ABC A'B'C' bằng
A. 4 3
B. 8 3
C. 2 3
D. 10 3
Đáp án là B.
Gọi I là trung điểm BC.
Ta có Δ A B C đều nên A I = A B 3 2 = 2 3 .
A I ⊥ B C A A ' ⊥ B C ⇒ A ' I ⊥ B C
S A ' B C = 1 2 B C . A ' I ⇒ A ' I = 2 S A ' B C B C = 4
A A ' ⊥ ( A B C ) ⇒ A A ' ⊥ A I .
Xét Δ A ' A I vuông tại ⇒ A A ' = A ' I 2 − A I 2 = 2
Vậy V A B C . A ' B ' C ' = S A B C . A A ' = 4 2 3 4 .2 = 8 3
Cho hình lăng trụ tam giác đều ABC. A ' B ' C ' có độ dài cạnh đáy bằng a và chiều cao bằng h . Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho.
A. V = π a 2 h 9
B. V = π a 2 h 6
C. V = π a 2 h 3
D. V = 3 π a 2 h
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại B, A C B ^ = 30 ° , AB = a; ∆ A'AC đều và (AA'C'C) ⊥ (A'B'C'). Tính thể tích V của lăng trụ ABC.A'B'C'.
A. V = 3 a 3 2
B. V = a 3 3
C. V = 2 a 3 3
D. V = a 3 3 2