Cho hình vẽ , biết :
\(\widehat{MNP}+\widehat{NPQ}=180^0;\widehat{MPQ}=50^0;Qx\perp PQ\)
Tính góc NMP và NRx
Cho hình vẽ biết:
\(\widehat{MNP}+\widehat{NPQ}=180^0;\widehat{MPQ}=50^0;Qx\perp PQ\\\)
Tính góc NMP và góc NRx
Cho hình vẽ , biết \(\widehat{CBy}>\widehat{ACB}\)
CMR : Nếu Ax // By thì \(\widehat{CAx}+\widehat{CBy}-\widehat{ACB}=180^0\)
bài 11.Cho hình vẽ biết: MNP + NPQ = 1800; MPQ = 500; \(Qx\perp PQ\). Tính góc NMP và NRx
Dễ thấy MR // PQ
\(\Rightarrow\widehat{RMP}+\widehat{MPQ}=180^0\)
\(\Rightarrow\widehat{RMP}+50^0=180^0\)
\(\Rightarrow\widehat{RMP}=30^0\)
Cho hình vẽ biết góc MNP + NPQ bằng 180 độ góc MPQ bằng 50 độ Qx
vuông góc với PQ. Tính góc NMP và góc NRx
cho tam giac MNP vuông tại M vẽ đường cao MH biết MH=18cm \(M\widehat{N}P\)=\(60^0\) tính diện tích tam giác MNP
Xét ΔMHN vuông tại H có
\(\sin N=\dfrac{MH}{MN}\)
nên \(MN=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)
=>\(MP=16\left(cm\right)\)
\(S=8\cdot\dfrac{16\sqrt{3}}{3}=\dfrac{128\sqrt{3}}{3}\left(cm^2\right)\)
Cho tam giác MNP biết 5\(\widehat{M}\) = 3\(\widehat{N}\); 7\(\widehat{M}\) - 4\(\widehat{N}\) = 150. Số đo góc \(\widehat{P}\) là ____
Cho tam giác MNP biết 5\(\widehat{M}\) = 3\(\widehat{N}\); 7\(\widehat{M}\) - 4\(\widehat{N}\) = 150. Số đo góc \(\widehat{P}\) là ____
Cho tam giác MNP biết 5\(\widehat{M}\) = 3\(\widehat{N}\); 7\(\widehat{M}\) - 4\(\widehat{N}\) = 150. Số đo góc \(\widehat{P}\) là ____
Ta có: 5\(\widehat{M}\) = 3\(\widehat{N}\) => \(\frac{\widehat{M}}{3}\) = \(\frac{\widehat{N}}{5}\) => \(\frac{7\widehat{M}}{21}\) = \(\frac{4\widehat{N}}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{7\widehat{M}}{21}\) = \(\frac{4\widehat{N}}{20}\) = \(\frac{7\widehat{M}-4\widehat{N}}{21-20}\) = 15o
Do \(\frac{7\widehat{M}}{21}\) = 15 => \(\widehat{M}\) = 45
\(\frac{4\widehat{N}}{20}\) = 15 => \(\widehat{N}\) = 75
Áp dụng tính chất tổng 3 góc trong 1 tam giác ta có:
\(\widehat{M}\) + \(\widehat{N}\) + \(\widehat{P}\) = 180 độ
=> 45 + 75 + \(\widehat{P}\) = 180
=> \(\widehat{P}\) = 60o
Vậy \(\widehat{P}\) = 60o.
Cho tam giác MNP \(\widehat{N}>\widehat{P}\). Vẽ phân giác MI. CMR: \(\widehat{MIP}-\widehat{MIN}\)=\(\widehat{N}-\widehat{P}\)
Vì \(\widehat{MIN};\widehat{MIP}\) lần lượt là góc ngoài tg MIP và NIM nên
\(\widehat{MIP}-\widehat{MIN}=\widehat{IMN}+\widehat{N}-\widehat{IMP}-\widehat{P}==\widehat{N}-\widehat{P}\left(\widehat{IMN}=\widehat{IMP}\right)\)