khi x thuộc [\(-\frac{\pi}{2};\frac{\pi}{2}\)] thì y=sinx+cosx có tất cả giá trị thuộc đoạn nào sau đây:
a) [-1;1]
b) [-\(\sqrt{2};\sqrt{2}\)]
c) (-1;\(\sqrt{2}\)]
d) [-1;\(\sqrt{2}\)]
help pls
Khi x thay đổi trong nửa khoảng \((-\frac{\pi}{3};\frac{\pi}{3}]\) thì y= cosx lấy mọi giá trị thuộc đoạn nào??
Sử dụng đường tròn lượng giác đó bạn
\(-\frac{\pi}{3}< x\le\frac{\pi}{3}\Rightarrow\frac{1}{2}\le cosx\le1\)
khi x thuộc (\(\frac{\pi}{3}\);-\(\frac{\pi}{3}\)) thì y=cos x nhận mọi giá trị trên:
a) (\(\frac{-1}{2};\frac{1}{2}\)] b) (\(\frac{1}{2};\frac{1}{2}\)) c) [\(\frac{1}{2}\);1] d) \(\left[-1;\frac{1}{2}\right]\)
Hoặc là bạn ghi đề sai hoặc là đáp án sai
Đầu tiên là \(\left(\frac{\pi}{3};-\frac{\pi}{3}\right)\) số dương đứng trước số âm thấy hơi kì
Thứ 2 là bạn chắc kí hiệu khoảng đoạn này chính xác chứ?
Từ đường tròn lượng giác ta thấy \(-\frac{\pi}{3}< cosx\le\frac{\pi}{3}\Rightarrow\frac{1}{2}\le y\le1\)
Hay \(y\in\left[\frac{1}{2};1\right]\)
Cho hàm số \(f(x) = {x^2} + {\sin ^3}x\). Khi đó \(f'\left( {\frac{\pi }{2}} \right)\) bằng
A. \(\pi \).
B. \(2\pi \).
C. \(\pi + 3\).
D. \(\pi - 3\).
\(f'\left(x\right)=2x+3sin^2\left(x\right)cos\left(x\right)\\ \Rightarrow f'\left(\dfrac{\pi}{2}\right)=\pi\)
\(\Rightarrow\) Chọn A.
cho \(x\in\left[-\frac{\pi}{4};\frac{\pi}{2}\right]\). Giá trị lượng giác \(cos\left(x-\frac{3\pi}{4}\right)\) thuộc tập nào?
\(-\frac{\pi}{4}\le x\le\frac{\pi}{2}\Rightarrow-\pi\le x-\frac{3\pi}{4}\le-\frac{\pi}{4}\)
\(\Rightarrow-1\le cos\left(x-\frac{3\pi}{4}\right)\le\frac{\sqrt{2}}{2}\)
tìm gtln,gtnn của hàm số sau
\(y=2sin\left(x+\frac{\pi}{3}\right),x\) thuộc \(\left[\frac{-4\pi}{3};\frac{2\pi}{3}\right]\)
\(-1\le sin\left(x+\frac{\pi}{3}\right)\le1\Rightarrow-2\le y\le2\)
\(y_{min}=-2\) khi \(x=-\frac{5\pi}{6}\)
\(y_{max}=2\) khi \(x=\frac{\pi}{6}\)
1. Chứng minh rằng: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
2. Chứng minh biểu thức sau không phụ thuộc \(x\): \(A=sin\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\), nếu \(cosx=\frac{1}{2}\) với \(\frac{3\pi}{2}< x< 2\pi\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
\(A=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{2}-\frac{\pi}{4}+x\right)=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{4}+x\right)=0\)
CMR: biểu thức sau không phụ thuộc vào x
P=sin4x+sin4\(\left(x+\frac{\pi}{4}\right)+sin^4\left(x+\frac{\pi}{2}\right)+sin^4\left(x+\frac{3\pi}{4}\right)\)
\(P=sin^4x+\left(sin^2\left(x+\frac{\pi}{4}\right)\right)^2+cos^4x+\left(cos^2\left(x+\frac{\pi}{4}\right)\right)^2\)
\(=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{4}\right)\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}+\frac{1}{2}sin2x+\frac{1}{4}sin^22x+\frac{1}{4}+\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)
\(=1+\frac{1}{2}\left(sin^22x+cos^22x\right)=\frac{3}{2}\)
Chứng minh biểu thức sau không phụ thuộc vào x \(cos\left(x-\frac{\pi}{3}\right)cos\left(x+\frac{\pi}{4}\right)+cos\left(x+\frac{\pi}{6}\right)cos\left(x+\frac{3\pi}{4}\right)\)
\(=cos\left(x-\frac{\pi}{3}\right)cos\left(x+\frac{\pi}{4}\right)+sin\left(\frac{\pi}{2}-x-\frac{\pi}{6}\right)sin\left(\frac{\pi}{2}-x-\frac{3\pi}{4}\right)\)
\(=cos\left(x-\frac{\pi}{3}\right)cos\left(x+\frac{\pi}{4}\right)+sin\left(\frac{\pi}{3}-x\right)sin\left(-x-\frac{\pi}{4}\right)\)
\(=cos\left(x-\frac{\pi}{3}\right)cos\left(x+\frac{\pi}{4}\right)+sin\left(x-\frac{\pi}{3}\right)sin\left(x+\frac{\pi}{4}\right)\)
\(=cos\left(x-\frac{\pi}{3}-x-\frac{\pi}{4}\right)=cos\left(-\frac{7\pi}{12}\right)=cos\frac{7\pi}{12}=\frac{\sqrt{2}-\sqrt{6}}{4}\)
số nghiệm của phương trình \(\cos\left(\frac{x}{2}+\frac{\pi}{4}\right)=0\) thuộc khoảng \(\left(\pi;8\pi\right)\)là bao nhiêu ?