Cho biet : \(\dfrac{a}{a'}+\dfrac{b'}{b}=1;\dfrac{b}{b'}+\dfrac{c'}{c}=1.CMR:abc+a'b'c'=0\)
cho A=\(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
rut gon A biet a+b+c=0
Từ \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+2ab+b^2=c^2\\a^2+2ac+c^2=b^2\\b^2+2bc+c^2=a^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2-c^2=-2ab\\a^2+c^2-c^2=-2ac\\b^2+c^2-a^2=-2bc\\\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{1}{-2ab}+\dfrac{1}{-2ac}+\dfrac{1}{-2bc}=\dfrac{a+b+c}{-2abc}=\dfrac{0}{-2abc}=0\)
Cho 2 bieu thuc :
A=\(\dfrac{x-3}{x+2}va\) B= \(\dfrac{3}{x+3}+\dfrac{2}{x-3}-\dfrac{3x-9}{x^2-9}\left(x-2,x\ne3x\ne-3\right)\)
a, Tinh gia tri bieu thuc A khi x=5
b, Chung minh : B=\(\dfrac{2}{x-3}\)
c, Biet C = A.B, Tim x de c = \(\dfrac{-1}{3}\)
\(a,A=\dfrac{5-3}{5+2}=\dfrac{2}{7}\\ b,B=\dfrac{3x-9+2x+6-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ c,C=AB=\dfrac{x-3}{x+2}\cdot\dfrac{2}{x-3}=\dfrac{2}{x+2}\\ C=-\dfrac{1}{3}\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(tm\right)\)
biet \(\dfrac{b\cdot z-x\cdot y}{a}=\dfrac{c\cdot x-a\cdot z}{b}=\dfrac{a\cdot y-b\cdot x}{c}\)
CM , \(\dfrac{a}{b}=\dfrac{b}{y}=\dfrac{c}{z}\)
Sửa đề: Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) . CMR: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Giải:
\(\dfrac{b.z-x.y}{a}=\dfrac{c.x-a.z}{b}=\dfrac{a.y-b.x}{c}\)
\(\Rightarrow\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bz\right)}{c^2}\)
\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
\(\Rightarrow\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)
\(\Rightarrow\dfrac{0}{a^2+b^2+c^2}\)
\(=0\)
\(\dfrac{bz-cy}{a}=0\)
\(\Rightarrow bz-cy=0\)
\(\Rightarrow\dfrac{z}{c}=\dfrac{y}{b}\left(1\right)\)
\(\dfrac{cx-az}{b}=0\)
\(\Rightarrow cx-az=0\)
\(\Rightarrow cx=az\)
\(\Rightarrow\dfrac{x}{a}=\dfrac{z}{c}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Câu 1: Tim x, y biet:
a) \(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(\dfrac{-1}{8}\right)\)
Câu 2: Tim cac so a,b biet:
\(\dfrac{a}{2}=\dfrac{b}{3}\) va \(a+b=-15\)
Câu 3: Tim x \(\in\) Q biet:
\(\left(x+1\right)\left(x-2\right)< 0\)
Câu 4: Thuc hien phep tinh:
\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9\)
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)
Biet \(\dfrac{a}{a}=\dfrac{b}{b}=\dfrac{c}{c}=4\) va \(a+b+c\ne0\)
Tinh \(M=\dfrac{a+b+c}{a+b+c}\)
Ta có: \(\dfrac{a}{a}=\dfrac{b}{b}=\dfrac{c}{c}=1\) (luôn đúng)
Suy ra \(\dfrac{a}{a}=\dfrac{b}{b}=\dfrac{c}{c}=4\) (vô lí)
=> Đề sai =))
TÌM a,b,c BIET
a,\(a+b=-9,b+c=2,c+a=-3\)
b,\(a+b=\dfrac{1}{2},b+c=\dfrac{3}{4},c+a=-\dfrac{5}{6}\)
c,\(a+b=2,b+c=6,c+a=3\)
d,\(a+b=\dfrac{5}{6},b+c=\dfrac{3}{4},c+a=\dfrac{5}{3}\)
a,
\(a+b=-9\\ b+c=2\\ c+a=-3\\ \Rightarrow a+b+b+c+c+a=\left(-9\right)+2+\left(-3\right)\\ 2a+2b+2c=-10\\ 2\left(a+b+c\right)=-10\\ a+b+c=-5\\ a+b=-9\\ \Rightarrow a+b+c=-5\Leftrightarrow\left(-9\right)+c=-5\Rightarrow c=4\\ b+c=2\\ \Rightarrow a+b+c=-5\Leftrightarrow a+2=-5\Rightarrow a=-7\\ c+a=-3\\ \Rightarrow a+b+c=-5\Leftrightarrow\left(-3\right)+b=-5\Rightarrow b=-2\)
Vậy \(a=-7;b=-2;c=5\)
b,
\(a+b=\dfrac{1}{2}\\ b+c=\dfrac{3}{4}\\ c+a=\dfrac{-5}{6}\\ \Rightarrow a+b+b+c+c+a=\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{-5}{6}\\ 2a+2b+2c=\dfrac{6}{12}+\dfrac{9}{12}+\dfrac{-10}{12}\\ 2\left(a+b+c\right)=\dfrac{5}{12}\\ a+b+c=\dfrac{5}{24}\\ a+b=\dfrac{1}{2}\\ \Rightarrow a+b+c=\dfrac{5}{24}\Leftrightarrow\dfrac{1}{2}+c=\dfrac{5}{24}\Rightarrow c=\dfrac{-7}{24}\\ b+c=\dfrac{3}{4}\\ \Rightarrow a+b+c=\dfrac{5}{24}\Leftrightarrow a+\dfrac{3}{4}=\dfrac{5}{24}\Rightarrow a=\dfrac{-13}{24}\\ a+c=\dfrac{-5}{6}\\ \Rightarrow a+b+c=\dfrac{5}{24}\Leftrightarrow b+\dfrac{-5}{6}=\dfrac{5}{24}\Rightarrow b=\dfrac{25}{24}\)
Vậy \(a=\dfrac{-13}{24};b=\dfrac{25}{24};c=\dfrac{-7}{24}\)
c,
\(a+b=2\\ b+c=6\\ c+a=3\\ \Rightarrow a+b+b+c+c+a=2+6+3\\ 2a+2b+2c=11\\ 2\left(a+b+c\right)=11\\ a+b+c=5,5\\ a+b=2\\ \Rightarrow a+b+c=5,5\Leftrightarrow2+c=5,5\Rightarrow c=3,5\\ b+c=6\\ \Rightarrow a+b+c=5,5\Leftrightarrow a+6=5,5\Rightarrow a=-0,5\\ c+a=3\\ \Rightarrow a+b+c=5,5\Leftrightarrow b+3=5,5\Rightarrow b=2,5\)
Vậy \(a=-0,5;b=2,5;c=3,5\)
d,
\(a+b=\dfrac{5}{6}\\ b+c=\dfrac{3}{4}\\ c+a=\dfrac{5}{3}\\ \Rightarrow a+b+b+c+c+a=\dfrac{5}{6}+\dfrac{3}{4}+\dfrac{5}{3}\\ 2a+2b+2c=\dfrac{10}{12}+\dfrac{9}{12}+\dfrac{20}{12}\\ 2\left(a+b+c\right)=\dfrac{13}{4}\\ a+b+c=\dfrac{13}{8}\\ a+b=\dfrac{5}{6}\\ \Rightarrow a+b+c=\dfrac{13}{8}\Leftrightarrow\dfrac{5}{6}+c=\dfrac{13}{8}\Rightarrow c=\dfrac{19}{24}\\ b+c=\dfrac{3}{4}\\ \Rightarrow a+b+c=\dfrac{13}{8}\Leftrightarrow a+\dfrac{3}{4}=\dfrac{13}{8}\Rightarrow a=\dfrac{7}{8}\\ c+a=\dfrac{5}{3}\\ \Rightarrow a+b+c=\dfrac{13}{8}\Leftrightarrow b+\dfrac{5}{3}=\dfrac{13}{8}\Rightarrow b=\dfrac{-1}{24}\)
Vậy \(a=\dfrac{7}{8};b=\dfrac{-1}{24};c=\dfrac{19}{24}\)
\(\left\{{}\begin{matrix}a+b=-9\\b+c=2\\c+a=-3\end{matrix}\right.\)
\(\Rightarrow a+b+b+c+c+a=\left(-9\right)+2+\left(-3\right)\)
\(\Rightarrow2a+2b+2c=-10\)
\(\Rightarrow2\left(a+b+c\right)=-10\)
\(\Rightarrow a+b+c=-5\)
\(\Rightarrow\left\{{}\begin{matrix}c=-5-9=-14\\a=-5-2=-7\\b=-5-\left(-3\right)=-2\end{matrix}\right.\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a+b}\). Tính \(\dfrac{b}{a}+\dfrac{a}{b}\)
Từ \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a+b}\) (a,b \(\ne\)0)
<=> \(\dfrac{a+b}{ab}=\dfrac{1}{a+b}\)
<=> \(\left(a+b\right)^2=ab\)
Ta có: \(\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{b^2+a^2}{ab}=\dfrac{\left(a+b\right)^2-2ab}{ab}=\dfrac{ab-2ab}{ab}=-\dfrac{ab}{ab}=-1\)
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)
\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)
\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
A=\(\dfrac{x}{x-\sqrt{x}+1}\)
B=\(\dfrac{x+2\sqrt{x}+1}{x\sqrt{x}+1}\)
Biet P = (1 - A) : B