Tính giá trị biểu thức \(A=\dfrac{x-y}{x+y};\) biết \(x^2-2y^2=xy\left(y\ne0;x+y\ne0\right)\)
Cho |x| =|y| và x< 0; y>0.
Tính giá trị của các biểu thức sau:
a) \(x+y\) b) \(\dfrac{1}{x}+\dfrac{1}{y}\)
a) Ta có: \(\left|x\right|=\left|y\right|\)
\(\Rightarrow\left|x\right|=\left[{}\begin{matrix}-x\\x\end{matrix}\right.\)
\(\Rightarrow\left|y\right|=\left[{}\begin{matrix}y\\-y\end{matrix}\right.\)
Mà \(x< 0;y>0\)
\(\Rightarrow x+y=0\)
Ta có: \(\left|x\right|=\left|y\right|\)
\(\Rightarrow\left|\dfrac{1}{x}\right|=\left[{}\begin{matrix}\dfrac{1}{x}\\-\dfrac{1}{x}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{y}=\left[{}\begin{matrix}\dfrac{1}{y}\\-\dfrac{1}{y}\end{matrix}\right.\)
Mà \(x< 0;y>0\)
\(\dfrac{1}{x}+\dfrac{1}{y}=0\)
Tính giá trị của biểu thức A = \(\dfrac{2}{x+y}\) biết x + y = 0
Cho biểu thức:
A = (\(\sqrt{x}\) + \(\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)) : (\(\dfrac{x}{\sqrt{xy}+y}\) + \(\dfrac{y}{\sqrt{xy}-x}\) - \(\dfrac{x+y}{\sqrt{xy}}\))
a) Rút gọn A
b) Tính giá trị của biểu thức A biết x = 3; y = 4 + 2\(\sqrt{3}\)
Cho x,y,z khác 0 và A=\(\dfrac{y}{z}\)+\(\dfrac{z}{y}\) ; B=\(\dfrac{x}{z}+\dfrac{z}{x}\); C=\(\dfrac{x}{y}+\dfrac{y}{x}\)
Tính giá trị biểu thức : A2+B2+C2-ABC
Cho tỉ lệ thức : \(\dfrac{x}{y}\) = \(\dfrac{2}{3}\). Tính giá trị của các biểu thức :
A = \(\dfrac{3x+5y}{7x-2y}\)
B = \(\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\)
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
TH1: \(x+y+z+t\ne0\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Rightarrow3x=y+z+t\Rightarrow4x=x+y+z+t\\ \dfrac{y}{z+t+x}=\dfrac{1}{3}\Rightarrow3y=x+z+t\Rightarrow4y=x+y+z+t\\ \dfrac{z}{t+x+y}=\dfrac{1}{3}\Rightarrow3z=x+y+t\Rightarrow4z=x+y+z+t\\ \dfrac{t}{x+y+z}=\dfrac{1}{3}\Rightarrow3t=x+y+z\Rightarrow4t=x+y+z+t\)
\(\Rightarrow4x=4y=4z=4t\\
\Rightarrow x=y=z=t\)
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =1+1+1+1\\ =4\)
TH1: \(x+y+z+t=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =\dfrac{-\left(z+t\right)}{z+t}+\dfrac{-\left(t+x\right)}{t+x}+\dfrac{-\left(x+y\right)}{x+y}+\dfrac{-\left(y+z\right)}{y+z}\\ =-1-1-1-1\\ =-4\)
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Tham khảo: https://hoc24.vn/cau-hoi/cho-bieu-thuc-pdfracxyztdfracyztxdfracztxydfractxyz-tinh-gia-tri-bieu-thuc-p-biet-dfracxyztdfracyzt.3023321885549
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Bạn lưu ý không đăng lặp bài gây loãng box toán.
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Lời giải:
Nếu $x+y+z+t=0$ thì:
$P=\frac{-(z+t)}{z+t}+\frac{-(t+x)}{t+x}+\frac{-(x+y)}{x+y}+\frac{-(y+z)}{y+z}$
$=-1+(-1)+(-1)+(-1)=-4$
Nếu $x+y+z+t\neq 0$ thì áp dụng TCDTSBN:
$\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3(x+y+z+t)}=\frac{1}{3}$
$\Rightarrow 3x=y+z+t; 3y=z+t+x; 3z=t+x+y; 3t=x+y+z$
$\Rightarrow x=y=z=t$
$\Rightarrow P=1+1+1+1=4$