Hãy so sánh A và B ,biết A=\(\dfrac{10^{2006}+1}{10^{2007}+1};\)
B=\(\dfrac{10^{2007}+1}{10^{2008}+1}\)
So sánh A và B biết : \(A=\dfrac{10^{2006}+1}{10^{2007}+1},B=\dfrac{10^{2007}+1}{10^{2008}+1}\)
Hãy so sánh A và B , biết:A=10^2006+1/10^2007+1;B=10^2007+1 / 10^2008+1
10A=10*\(\frac{10^{2006}+1}{10^{2007}+1}\) 10B=10*\(\frac{10^{2007}+1}{10^{2008}+1}\)
10A=\(\frac{10^{2007}+1+9}{10^{2007}+1}\) 10B=\(\frac{10^{2008}+1+9}{10^{2008}+1}\)
10A=1+\(\frac{9}{10^{2007}+1}\) 10B=1+\(\frac{9}{10^{2008}+1}\)
Vì \(\frac{9}{10^{2007}+1}\)>\(\frac{9}{10^{2008}+1}\)=>1+\(\frac{9}{10^{2007}+1}\)>1+\(\frac{9}{10^{2008}+1}\)
Nên 10A>10B=>A>B
Ta có: \(A=\frac{10^{2006}+1}{10^{2007}+1}\)
\(=>10A=\frac{10^{2007}+10}{10^{2007}+1}=\frac{10^{2007}+1+9}{10^{2007}+1}=\frac{10^{2007}+1}{10^{2007}+1}+\frac{9}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)
\(B=\frac{10^{2007}+1}{10^{2008}+1}\)
\(=>10B=\frac{10^{2008}+10}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}=\frac{10^{2008}+1}{10^{2008}+1}+\frac{9}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)
Vì \(10^{2007}+1< 10^{2008}+1=>\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}=>1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}=>10A>10B=>A>B\)
Cho B = \(\frac{10^{2007}+1}{10^{2008}+1}\)
Rõ ràng B < 1 nên theo B, nếu \(\frac{a}{b}< 1\) thì \(\frac{a+n}{b+n}>\frac{a}{b}\) => B < \(\frac{\left(10^{2007}+1\right)+9}{\left(10^{2008}+1\right)+9}=\frac{10^{2007}+10}{10^{2008}+10}\)
Do đó B < \(\frac{10^{2007}+10}{10^{2008}+10}=\frac{10\left(10^{2006}+1\right)}{10\left(10^{2007}+1\right)}=\frac{10^{2006}+1}{10^{2007}+1}\)
=> A > B
Hãy so sánh A và B , biết:A=10^2006+1/10^2007+1;B=10^2007+1 / 10^2008+1
So sánh A và B biết : A= 102006+1 trên 102007 . B= 102007+1 trên 102008 +1
a ) so sánh c và d biết :
C = \(\dfrac{1957}{2007}\) với D = \(\dfrac{1935}{1985}\)
b )hãy so sánh A và B
cho A = \(\dfrac{2016^{2016}+2}{2016^{2016}-1}\) và B = \(\dfrac{2016^{2016}}{2016^{2016}-3}\)
c ) so sánh M và N biết :
M = \(\dfrac{10^{2018}+1}{10^{2019}+1}\) ; N = \(\dfrac{10^{2019}+1}{10^{2020}+1}\)
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
So sánh A và B, biết \(A=\dfrac{10^{2006}+1}{10^{2007}+1};B=\dfrac{10^{2007}+1}{10^{2008}+1}\)
\(10A=\dfrac{10^{2007}+10}{10^{2007}+1}=\dfrac{10^{2007}+1+9}{10^{2007}+1}=1+\dfrac{9}{10^{2007}+1}\left(1\right)\)\(10B=\dfrac{10^{2008}+10}{10^{2008}+1}=\dfrac{10^{2008}+1+9}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\left(2\right)\)Từ (1) và ( 2 ) suy ra A>B
Cách 2 :
Ta CM BĐT sau :
\(\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a< b;a;b;m>0\right)\)
Ta có :
\(a< b\\ \Rightarrow am< bm\\ \Rightarrow ab+am< bm+ab\\ \Rightarrow a\left(b+m\right)< b\left(a+m\right)\\ \Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
\(\Rightarrow A=\dfrac{10^{2007}+1}{10^{2008}+1}< \dfrac{10^{2007}+1+9}{10^{2008}+1+9}\\ =\dfrac{10\left(10^{2006}+1\right)}{10\left(10^{2007}+1\right)}=\dfrac{10^{2006}+1}{10^{2007}+1}=B\\ \Rightarrow A< B\)
So sánh a=10^2006+1/10^2007+1 VÀ B=10^2007+1/10^2008+1
A=\(\frac{10^{2006}+1}{10^{2007}+1}\) và B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
Hãy so sánh A và B
\(1-A=\frac{10^{2007}-10^{2006}}{10^{2007}+1}=\frac{9.10^{2006}}{10^{2007}+1}=\frac{9.2^{2007}}{10^{2008}+10}\)
\(1-B=\frac{10^{2008}-10^{2007}}{10^{2008}+1}=\frac{9.10^{2007}}{10^{2008}+1}\)
=>1-A< 1-B
=> A > B
So sánh A và B biết
A=\(\frac{10^{2006}+1}{10^{2007}+1}\);B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
So sánh : A= 10^2006+1/10^2007+1 ; B= 10^2007+1/10^2008+1
Ta có: A=\(\frac{10^{2006}+1}{10^{2007}+1}\)
=>10A=\(\frac{10\left(10^{2006}+1\right)}{10^{2007}+1}=\frac{10^{2007}+10}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)
Ta có: B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
=>10B=\(\frac{10\left(10^{2007}+1\right)}{10^{2008}+1}=\frac{10^{2008}+10}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)
Mà \(\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}\) (do 102007+1<102008+1)
=>\(1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}\)
=>10A>10B
=>A>B
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
=> \(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)
=> \(B< \frac{10^{2007}+10}{10^{2008}+10}\)
=> \(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)
=> \(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)