Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
marivan2016
Xem chi tiết
Hạ Hoa
Xem chi tiết
Vương Hàn
Xem chi tiết
soyeon_Tiểubàng giải
25 tháng 9 2016 lúc 20:59

a) am = an

=> am - an = 0

=> an.(am-n - 1) = 0

=> an = 0 hoặc am-n - 1 = 0

=> a = 0 hoặc am-n = 1

=> a = 0 hoặc m - n = 0

=> m = n

b) am > an

=> am - an > 0

=> an.(am-n - 1) > 0

=> an và am-n - 1 cùng dấu

Mà a > 0 => an > 0 => am-n - 1 > 0

=> am-n > 1

=> m - n > 0

=> m > n

Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 11:35

Chọn C

Nguyễn Thị Phương Thảo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Xuân Tuấn Trịnh
18 tháng 5 2017 lúc 19:59

Admin ơi,bài này sai đề

Huyền Anh Kute
18 tháng 5 2017 lúc 20:08

a, Ta có:\(8+15=23;8+4=12;45+15=60;45+4=49\)

\(\Rightarrow\) Các tập hợp của C là : \(\left\{12;23;49;60\right\}\)

b, Ta có:

\(8-4=4;45-15=30;45-4=41\)

\(\Rightarrow\) Các tập hợp của D là : \(\left\{4;30;41\right\}\)

c, Ta có:

\(8.15=120;8.4=32;45.15=675;45.4=180\)

\(\Rightarrow\) Các tập hợp của E là : \(\left\{32;120;180;675\right\}\)

d, Ta có:

\(8:4=2;45:15=3\)

\(\Rightarrow\) Các tập hợp của G là: \(\left\{2;3\right\}\)

Tường Vy
Xem chi tiết
Mai Anh
Xem chi tiết
Võ Đông Anh Tuấn
1 tháng 1 2017 lúc 10:28

Do p là số nguyên tố nên \(p-1\) là số chẵn , suy ra : \(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)

\(=\left(\frac{1}{1}+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+\left(\frac{1}{3}+\frac{1}{p-3}\right)+...+\left(\frac{1}{\frac{p-1}{2}}+\frac{1}{\frac{p+1}{2}}\right)\)

\(=\frac{p}{1.\left(p-1\right)}+\frac{p}{2.\left(p-2\right)}+\frac{p}{3.\left(p-3\right)}+...+\frac{p}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\)

\(=p\left[\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+\frac{1}{3.\left(p-3\right)}+...+\frac{1}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\right]\)

Ta có : \(1.\left(p-1\right).2.\left(p-2\right)...\frac{p-1}{2}.\frac{p+1}{2}=\left(p-1\right)!\)

Suy ra : \(\frac{m}{n}\) có dạng :

\(\frac{m}{n}=p\frac{q}{\left(p-1\right)!}\Rightarrow m\left(p-1\right)!=npq\Rightarrow m\left(p-1\right)!⋮p\)\(\left(p-1\right)!⋮̸p\) nên \(\Rightarrow m⋮p\).

Chúc bạn học tốt nha !!!

soyeon_Tiểubàng giải
1 tháng 1 2017 lúc 10:38

\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)

\(\frac{m}{n}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+...+\)\(\left(\frac{1}{\left(p-1\right):2}+\frac{1}{\left(p-1\right):2+1}\right)\)

\(\frac{m}{n}=p.\)(\(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+...+\)\(\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\))

MC: 1.2.3...(p-1)

Gọi các thừa số phụ lần lượt là: k1;k2;k3;...;kp-1

Khi đó, \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+...+k_{p-1},\right)}{1.2.3...\left(p-1\right)}\)

Do p nguyên tố > 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p

=> m chia hết cho p (đpvm)

Võ Đông Anh Tuấn
1 tháng 1 2017 lúc 10:18

Mình bận xem mấy cái dạng bài tập hóa . Bạn cần gấp không mình làm cho .hihi

Trung Nguyen
Xem chi tiết
Cipher Thanh
Xem chi tiết