Bài tập cuối chương 5

Bài tập 11 (SGK Chân trời sáng tạo - Tập 1 - Trang 104)

Hướng dẫn giải

a) Các góc ở tâm có trong hình là: \(\widehat {DOA};\widehat {DOC};\widehat {COB};\widehat {BOA};\widehat {DOB};\widehat {COA}\)

b) Ta có: \(\widehat {DOA} = {120^o}\)

Vì \(OA \bot OC\) nên \(\widehat {COA} = {90^o}\)

Vì \(OB \bot OD\) nên \(\widehat {DOB} = {90^o}\)

Từ đó ta tính được: 

\(\widehat {DOC} = \widehat {DOA} - \widehat {COA} = {120^o} - {90^o} = {30^o}\)

\(\widehat {COB} = \widehat {DOB} - \widehat {DOC} = {90^o} - {30^o} = {60^o}\)

\(\widehat {BOA} = \widehat {COA} - \widehat {COB} = {90^o} - {60^o} = {30^o}\)

c) sđ\(\overset\frown{CD}=\) sđ\(\overset\frown{AB}\) \((= 30^o)\) 

sđ\(\overset\frown{BD}=\) sđ\(\overset\frown{AC}\) \(( = 90^o)\)

d) sđ\(\overset\frown{AB}\) = sđ\(\overset\frown{CD}\) \((=30^o)\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 12 (SGK Chân trời sáng tạo - Tập 1 - Trang 104)

Hướng dẫn giải

a) Ta có \(\widehat {ACD}\) chắn đường kính AD nên \(\widehat {ACD} = {90^o}\).

Do đó \(AC \bot CD\)

b) Ta có \(\widehat {ABC};\widehat {ADC}\) là góc nội tiếp cùng chắn cung AC nên \(\widehat {ABC} = \widehat {ADC}\).

c) Tam giác ACD có 3 đỉnh nằm trên đường tròn và AD là đường kính nên tam giác ACD vuông tại C.

Suy ra \(\widehat {AHB} = \widehat {ACD}\)

\(\widehat {ABC} = \widehat {ADC}\) (hai góc nội tiếp cùng chắn cung AC)

Vậy \(\Delta \)ABH \(\backsim \)\(\Delta \)ADC (g.g)

Do đó, \(\frac{{AB}}{{AD}} = \frac{{AH}}{{AC}}\) hay AB.AC = AD.AH (đpcm)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 13 (SGK Chân trời sáng tạo - Tập 1 - Trang 105)

Bài tập 14 (SGK Chân trời sáng tạo - Tập 1 - Trang 105)

Hướng dẫn giải

a) Ta có OO’ = OB + BO’ (d = R + R’)

Do đó đường tròn (O) và đường tròn (O’) tiếp xúc ngoài.

b) Xét tam giác DOE có OD = OE = R nên tam giác DOE cân tại O.

Vì \(OH \bot DE\) nên OH vừa là đường cao đồng thời là đường trung tuyến của tam giác DOE.

Suy ra H là trung điểm của DE.

Xét tứ giác ADCE có:

AC cắt DE tại H,

H là trung điểm của AC,

H là trung điểm của DE

Do đó tứ giác ADCE là hình bình hành.

Mặt khác, AC\( \bot \)DE (gt)

Vậy tứ giác ADCE là hình thoi.

c) Tam giác EAB nội tiếp đường tròn đường kính AB (gt)

Suy ra tam giác EAB vuông tại E hay EB\( \bot \)AE.

Ta có AE // CD (tứ giác ADCE là hình thoi) và EB\( \bot \)AE

Nên EB\( \bot \)CD.

Ta có EB\( \bot \)CD và FB\( \bot \)CD suy ra EB và FB trùng nhau.

Vậy ba điểm F, B, E thẳng hàng.

d) Tam giác FDE vuông tại F, FH là đường trung tuyến.

Suy ra FH = DH nên tam giác HFD cân tại H.

Do đó \(\widehat {HFD} = \widehat {HDC}\)

Mặt khác, O’F = O’C suy ra tam giác O’FC cân tại O’

Suy ra \(\widehat {O'FC} = \widehat {HCD}\)

Mà \(\widehat {HDC} = \widehat {HCD}\) và \(\widehat {HDC} + \widehat {HCD} = {90^o}\) (tam giác HCD vuông tại H)

Nên \(\widehat {HFD} + \widehat {O'FC} = {90^o}\)

Do đó \(\widehat {HFO'} = {180^o} - (\widehat {HFD} + \widehat {O'FC}) = {180^o} - {90^o} = {90^o}\)

Ta có HF\( \bot \)O’F, F thuộc đường tròn (O’).

Vậy HF là tiếp tuyến của đường tròn (O’).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 15 (SGK Chân trời sáng tạo - Tập 1 - Trang 105)

Hướng dẫn giải

Ngọn của hải đăng là điểm \(A\) và mắt người quan sát ở vị trí \(B\). Khi người quan sát thấy ngọn hải đăng thì \(AB\) là tiếp tuyến của đường tròn \((O)\) tại \(H\).

Suy ra \(OH \perp AB\) (tính chất của tiếp tuyến).

Xét tam giác \(OAH\) vuông tại \(H\) có: \(OH \approx 6400\) (km);

\(OA = AC + CO \approx 0,065 + 6400 = 6400,065 \text{ (km)};\)

\(AH = \sqrt{OA^2 - OH^2} = \sqrt{(6400,065)^2 - 6400^2} \approx 28,84 \text{ (km)}.\)

Xét tam giác \(OBH\) vuông tại \(H\), ta có:

\(OB = BD + DO \approx 0,065 + 6400 = 6400,065 \text{ (km)};\)

\(BH = \sqrt{OB^2 - OH^2} = \sqrt{(6400,065)^2 - 6400^2} \approx 28,84 \text{ (km)}.\)

Ta có:

\(AB = AH + HB \approx 28,84 + 8 = 36,84 \text{ (km)}.\)

Vậy với khoảng cách khoảng 36,84 km thì người quan sát trên tàu bắt đầu trông thấy ngọn của hải đăng.

(Trả lời bởi datcoder)
Thảo luận (1)