Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC cân tại A có BC=\(4\sqrt{2}\), các đường thẳng AB và AC lần lượt đi qua các điểm M(1,-5/3) và N(0,18/7). Xác định tọa độ các đỉnh của tam giác ABC, biết đường cao AH có pt x+y-2=0 và điểm B có hoành độ dương.
Help meee!!!
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại B, BC = 2BA. Gọi E,F lần lượt là trung điểm của BC,AC. Trên tia đối của tia FE lấy điểm M sao cho FM = 3FE. Biết điểm M (5;-1), đường thẳng AC có phương trình 2x + y - 3 = 0, điểm A có hoành độ là số nguyên. Xác định tọa độ các đỉnh của tam giác ABC.
Trong mp tọa độ Oxy cho tam giác ABC. Biết phương trình các đường thẳng chứa đường cao BH, phân giác AD lần lượt làx+4y+5=0; x-y+2=0; điểm M(1; 2) thuộc đường thẳng AB. Tính tọa độ AB
Trong mặt phẳng tọa độ oxy,viết phương trình đường thẳng d đi qua điểm M(1,2) và cắt các tia ox,oy lần lượt tại A,B (khác gốc tọa độ O) sao cho tam giác OAB có diện tích bằng 4.
trong mặt phẳng có hệ trục toạ độ là oxy,cho tam giác ABC với A(1;1),B(2;3),C(3;-1)
a,Viết phương trình tổng quát của đường thẳng Δ đi qua điểm B và song song vói đường thẳng AC
b,Tìm toạ độ điểm M trên đường thẳng BC sao cho diện tích tam giác ABC gấp 3 lần diện tích tam giác ABM
Câu 60: Trong mặt phẳng Oxy, cho tam giác ABC có phương trình cạnh AB là x - y - 2 = 0 , phương trình đường thẳng chứa cạnh AC là x + 2y - 5 = 0 . Biết trọng tâm của tam giác là điểm G(3; 2) và phương trình đường thẳng chứa cạnh BC có dạng mx + ny + 7 = 0 . Giá trị của biểu thức T = m - n là ...
Trong mật phẳng tọa độ Oxy , cho tam giác ABC có trọng tâm G(2;-3) và B(1;1) . Đương thẳng △ : x-y-4=0 đi qua A và đường phân giác trong góc A cắt BC tại điểm I sao cho diện tích tam giác IAB = \(\dfrac{4}{5}\) diện tích tam giác IAC . Biết điểm A có hoành độ dương . Viết phương trình tổng quát của đường thẳng BC
Trong mặt phẳng của hệ tọa độ Oxy , cho tam giác ABC có AB = AC , \(\widehat{BAC}\) = 90 độ . Biết M(1 ; -1 ) là trung điểm của cạnh BC và G ( \(\dfrac{2}{3}\) ; 0 ) là trọng tâm tam giác ABC . Khi đó , A ( xa ; yb ) , B ( xa ; yb ) (xb < 0 ) . Tính 2019 x2A + y A + 2xB - 3yB.
Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD có I là giao điểm của hai đường chéo AC và BD. Gọi M(3;2) và N(1;-2) lần lượt là trung điểm của các đoạn AB và ID. Tìm phương trình tổng quát của đoạn thẳng AB.