Trong mặt phẳng Oxy, cho tam giác ABC với \(A\left(-5;6\right);B\left(-4;-1\right);C\left(4;3\right)\) :
a) Tính tọa độ trực tâm H của tam giác ABC
b) Tìm điểm M thuộc trục Oy sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) ngắn nhất ?
Cho tam giác ABC có \(\widehat{BAC}=60^0;AB=4;AC=6\)
a) Tính tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC};\overrightarrow{AB}.\overrightarrow{BC}\), độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác ABC
b) Lấy các điểm M, N định bởi : \(2\overrightarrow{AM}+3\overrightarrow{MC}=\overrightarrow{0};\overrightarrow{NB}+x\overrightarrow{BC}=\overrightarrow{0};\left(x\ne-1\right)\). Định \(x\) để AN vuông góc với BM ?
Trong mặt phẳng tọa độ Oxy cho 3 điểm \(A\left(7;-3\right);B\left(8;4\right);C\left(1;5\right)\) :
a) Tìm tọa độ điểm D thỏa mãn \(\overrightarrow{AB}=\overrightarrow{DC}\)
b) Chứng minh rằng tứ giác ABCD là hình vuông
Trên mặt phẳng tọa độ Oxy cho điểm \(A\left(2;-1\right)\) :
a) Tìm tọa độ điểm B đối xứng với A qua gốc tọa độ O
b) Tìm tọa độ điểm C có tung độ bằng 2 sao cho tam giác ABC vuông ở C
Cho tam giác ABC đều cạnh a. Lấy hai điểm M,N thoả \(\overrightarrow{BM}=\dfrac{1}{3}\overrightarrow{BC};\overrightarrow{AN}=\dfrac{1}{3}\overrightarrow{AB}\)
Gọi I là giao điểm AM và CN. Chứng minh: \(\widehat{BIC}=90^0\)
Bài 2: Trong mặt phẳng hệ tọa độ Oxy cho AABC có M(0;5) là trung điểm cạnh BC. Đường thẳng
chứa cạnh AB, AC lần lượt có phương trình 2x +y-12 =0, x+4y-6=0. Tìm tọa độ 3 đỉnh của tam
giác ABC.
Cho tam giác ABC có BC = a, CA = b, AB = c
a) Chứng minh rằng : \(\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{b^2+c^2-a^2}{2}\)
b) Chứng minh rằng : \(\overrightarrow{AB}.\overrightarrow{AC}=AI^2-\dfrac{BC^2}{4}\) với I là trung điểm của BC
c) Gọi G là trọng tâm của tam giác ABC, với M là điểm bất kì trong mặt phẳng, chứng minh hệ thức sau ;
\(MA^2+MB^2+MC^2=GA^2+GB^2+GC^2+3MG^2\)
Trong mặt phẳng Oxy, cho tam giác ABC với \(A\left(2;4\right);B\left(3;1\right);C\left(-1;1\right)\) :
a) Tìm tọa độ trọng tâm G, trực tâm H, tâm I của đường tròn ngoại tiếp tam giác ABC
b) Chứng minh H, G, I thẳng hàng
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A\left(-1;2\right);B\left(2;0\right);C\left(-3;1\right)\). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC ?