Tính tích vô hướng của hai vectơ \(\overrightarrow{a},\overrightarrow{b}\) trong không gian với các tọa độ đã cho là :
a) \(\overrightarrow{a}=\left(3;0;-6\right);\overrightarrow{b}=\left(2;-4;c\right)\)
b) \(\overrightarrow{a}=\left(1;-5;2\right);\overrightarrow{b}=\left(4;3;-5\right)\)
c) \(\overrightarrow{a}=\left(0;\sqrt{2};\sqrt{3}\right);\overrightarrow{b}=\left(1;\sqrt{3};-\sqrt{2}\right)\)
Trong không gian Oxyz, cho 3 vectơ \(\overrightarrow{a}=\left(2;-5;3\right);\overrightarrow{b}=\left(0;2;-1\right);\overrightarrow{c}=\left(1;7;2\right)\)
a) Tính tọa độ của vectơ \(\overrightarrow{d}=4\overrightarrow{a}-\dfrac{1}{3}\overrightarrow{b}+3\overrightarrow{c}\)
b) Tính tọa độ của vectơ \(\overrightarrow{e}=\overrightarrow{a}-4\overrightarrow{b}-2\overrightarrow{c}\)
Trong không gian Oxyz cho ba vectơ \(\overrightarrow{a}=\left(2;-1;2\right);\overrightarrow{b}=\left(3;0;1\right);\overrightarrow{c}=\left(-4;1;-1\right)\). Tìm tọa độ của các vectơ \(\overrightarrow{m}\) và \(\overrightarrow{n}\) biết rằng :
a) \(\overrightarrow{m}=3\overrightarrow{a}-2\overrightarrow{b}+\overrightarrow{c}\)
b) \(\overrightarrow{n}=2\overrightarrow{a}+\overrightarrow{b}+4\overrightarrow{c}\)
Trong không gian Oxyz cho vectơ \(\overrightarrow{a}=\left(1;-3;4\right)\)
a) Tìm \(y_0\) và \(z_0\) để cho vectơ \(\overrightarrow{b}=\left(2;y_0;z_0\right)\) cùng phương với \(\overrightarrow{a}\)
b) Tìm tọa độ của vectơ \(\overrightarrow{c}\) biết rằng \(\overrightarrow{a}\) và \(\overrightarrow{c}\) ngược hướng và \(\left|\overrightarrow{c}\right|=2\left|\overrightarrow{a}\right|\)
Trong không gian Oxyz, cho hai vecto\(\overrightarrow{a}\) và \(\overrightarrow{b}\) thỏa |\(\overrightarrow{a}\)| =2; |\(\overrightarrow{b}\)|=1; (\(\overrightarrow{a}\),\(\overrightarrow{b}\))=\(\dfrac{\pi}{3}\). Góc giữa vecto \(\overrightarrow{b}\) và vecto \(\overrightarrow{a}\)-\(\overrightarrow{b}\) bằng
1. Tong không gian với hệ tọa dộ Oxyz , cho hai điểm A(2;1;-1), B(0;3;1)và mp (P): x + y - z + 3 = 0. Tìm tọa độ điểm M thuộc (P) sao cho \(\left|2\overrightarrow{MA}-\overrightarrow{MB}\right|\)có giá trị nhỏ nhất
Trong không gian cho ba vectơ tùy ý \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\)
Gọi \(\overrightarrow{u}=\overrightarrow{a}-2\overrightarrow{b};\overrightarrow{v}=3\overrightarrow{b}-\overrightarrow{c};\overrightarrow{w}=2\overrightarrow{c}-3\overrightarrow{a}\)
Chứng tỏ rằng ba vectơ \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\) đồng phẳng ?
Cho hình tứ diện ABCD. Chứng minh rằng :
a) \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\)
b) \(\overrightarrow{AB}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{CD}+\overrightarrow{DB}\)
Cho hình tứ diện ABCD. Gọi M. N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng :
a) \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}=2\overrightarrow{MN}\)
b) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}=2\overrightarrow{PQ}\)