Trên mặt nước nằm ngang, tại hai điểm A; B cách nhau 8,2 cm, người ta đặt hai nguồn sóng kết hợp, dao động điều hoà theo phương thẳng đứng có tần số 15 Hz và luôn dao động đồng pha. Biết tốc độ truyền sóng trên mặt nước là 30 cm/s, coi biên độ sóng không đổi khi truyền đi. Tính số điểm dao động với biên độ cực đại, cực tiểu trên đoạn AB.
\(\lambda=\frac{v}{f}=\frac{30}{15}=2cm\)
Vì 2 nguồn cùng pha nên số điểm dao động với biên độ cực đại trên đoạn AB thỏa mãn:
\(-AB< k\lambda< AB\)
\(\Leftrightarrow\) -8,2 < 2k < 8,2
\(\Leftrightarrow\) -4,1 < k < 4,1\(k\in Z\Rightarrow k=0;^+_-1;^+_-2;^+_-3;^+_-4\)
Vậy có 9 điểm dao động với biên độ cực đại trên đoạn AB.
Số điểm dao động với biên độ cực tiểu trên đoạn AB thỏa mãn:
\(-AB< \left(k+0,5\right)\lambda< AB\)
\(\Leftrightarrow\) -8,2 < (k+0,5).2 < 8,2
\(\Leftrightarrow\) -4,6 < k < 3,6
\(k\in Z\Rightarrow k=0;^+_-1;^+_-2;^+_-3;-4\)
Vậy có 8 điểm có biên độ dao động cực tiểu trên đoạn AB.