Bài tập cuối chương 4

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tính thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox:

a) y = 1 – x2, y = 0, x = −1, x = 1;                        b) \(y=\sqrt{25-x^2},y=0,x=2,x=4\).

datcoder
27 tháng 10 2024 lúc 17:48

a) Thể tích khối tròn xoay cần tính là:

\(V = \pi \int\limits_{ - 1}^1 {{{\left( {1 - {x^2}} \right)}^2}dx}  = \pi \int\limits_{ - 1}^1 {\left( {1 - 2{x^2} + {x^4}} \right)dx}  = \pi \left( {x - \frac{{2{x^3}}}{3} + \frac{{{x^5}}}{5}} \right)\left| \begin{array}{l}1\\ - 1\end{array} \right.\)

\( = \pi \left( {1 - \frac{2}{3} + \frac{1}{5} + 1 - \frac{2}{3} + \frac{1}{5}} \right) = \frac{{16}}{{15}}\pi \)

b) Thể tích khối tròn xoay cần tính là:

\(V = \pi \int\limits_2^4 {\left( {25 - {x^2}} \right)dx}  = \pi \left( {25x - \frac{{{x^3}}}{3}} \right)\left| \begin{array}{l}4\\2\end{array} \right. = \pi \left( {25.4 - \frac{{{4^3}}}{3} - 25.2 + \frac{{{2^3}}}{3}} \right) = \frac{{94}}{3}\pi \)