=> 1 - 3x + 3x2 - x3 + x3 - 6x2 + 12x - 8 = -3x2 + 6x - 3
làm tắt, có: 3x = 4
=> x=4/3
mình làm hơi tắt nên có thể sai bạn kiểm tra dùm mình nhé
=> 1 - 3x + 3x2 - x3 + x3 - 6x2 + 12x - 8 = -3x2 + 6x - 3
làm tắt, có: 3x = 4
=> x=4/3
mình làm hơi tắt nên có thể sai bạn kiểm tra dùm mình nhé
a) (x+2)\(^2\)+2(x-4)=(x-4)(x-2)
b) (x+1)(2x-3)-3(x-2)=2(x-1)
c) (x+3)\(^2\)-(x-3)\(^2\)=6x+18
d) (x-1)\(^3\)-x(x+1)\(^2\)=5x(2-x)-11(x+2)
1) (x - 2)² + 4(x - 3) =(x² + x - 3)
2) (x - 2)² – 2(x + 1) = (x - 1)(x - 2)
3) (x - 2)² + 3(x - 5) = x² + 3x - 3
4)(x - 3)² + (x + 3)² = 2 (x² +9)
5) (3x - 1)² + (3x +1)² = 2(9x² + 4) + 1
6) (x - 1)(x - 2) + (2x + 1)² = 5x²
1) (x - 2)² + 4(x - 3) =(x² + x - 3)
2) (x - 2)² – 2(x + 1) = (x - 1)(x - 2)
3) (x - 2)² + 3(x - 5) = x² + 3x - 3
4)(x - 3)² + (x + 3)² = 2 (x² +9)
5) (3x - 1)² + (3x +1)² = 2(9x² + 4) + 1
6) (x - 1)(x - 2) + (2x + 1)² = 5x²
Bài 2:
a) (x+1)(2x-3)-3(x-2)
=2(x-1)\(^2\)
b) (x+1)(x\(^2\)-x+1)-2x
=x(x-1)(x+1)
c) \(\dfrac{x}{3}\)-\(\dfrac{5x}{6}\)-\(\dfrac{15x}{12}\)=\(\dfrac{x}{4}\)-5
d) \(\dfrac{x-1}{2}\)-\(\dfrac{x+1}{15}\)-
\(\dfrac{2x-13}{6}\)=0
e) \(\dfrac{3\left(5x-2\right)}{4}\)-2
=\(\dfrac{7x}{3}\)-5(x-7)
g) \(\dfrac{x-3}{11}\)+\(\dfrac{x+1}{3}\)
=\(\dfrac{x+7}{9}\)-1
h) \(\dfrac{3x-0,4}{2}\)+\(\dfrac{1,5-2x}{3}\)
=\(\dfrac{x+0,5}{5}\)
Chứng minh đẳng thức:
a, (x^2-2x/2x^2+8-2x^2/8-4x+2x^2-x^3)(1-1/x-2/x^2)=x+1/2x
b, [2/3x-2/x+1(x+1/3x-x-1)]:x-1/x=2x/x-1
c, [2/(x+1)^3(1/x+1)+1/x^2+2x+1(1/x^2+1)]:x-1/x^3=x/x-1
4 * ( x + 10 ) +5 = 2 * ( 3x + 10 - 2
5 * (x-2) -3 = 2* (x-1)+9
5x*(x-3)-2*(3-x)=0
2x*(3x-3)+4=3x(2x+1)-1
(x-4)(x+1)-x2 +1=0
(3x-2)2 - (x+5)2 =0
4*(x+1)=3+2x
a) 5(k+3x)(x+1)-4(1+2x)=80 x\(_0\)=2Tìm gt của kb) x+1=xc) x+2=0d) x+5=0e) (x+1)(2x-3)-3(x-2)=2(x-1)\(^2\)f) (x+1)(x\(^2\)-x+1)-2x=x(x-1)(x+1)g)\(\dfrac{x}{3}\)-\(\dfrac{5x}{6}\)-\(\dfrac{15x}{12}\)=\(\dfrac{x}{4}\)-5h) \(\dfrac{x-1}{2}\)-\(\dfrac{x+1}{15}\)-\(\dfrac{2x-13}{6}\)=0i) \(\dfrac{3\left(5x-2\right)}{4}\)-2=\(\dfrac{7x}{3}\)-5(x-7)
j) \(\dfrac{x-3}{11}\)+\(\dfrac{x+1}{3}\)=\(\dfrac{x+7}{9}\)-1k)\(\dfrac{3x-0,4}{2}\)+\(\dfrac{1,5-2x}{3}\)=\(\dfrac{x+0,5}{5}\)l) \(\dfrac{x-4}{5}\)+\(\dfrac{3x-2}{10}\)-x=\(\dfrac{2x-5}{3}\)-\(\dfrac{7x+2}{6}\)m) \(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\)=\(\dfrac{\left(x-4\right)^{^2}}{6}\)+\(\dfrac{\left(x-2^{ }\right)^2}{3}\)n) \(\dfrac{7x^2-14x-5}{15}\)=\(\dfrac{\left(2x+1\right)^2}{5}\)-\(\dfrac{\left(x-1\right)^2}{3}\)o) \(\dfrac{\left(7x+1\right)\left(x-2\right)}{10}\)+\(\dfrac{2}{5}\)=\(\dfrac{\left(x-2^{ }\right)^2}{5}\)+\(\dfrac{\left(x-1\right)\left(x-2\right)}{10}\)
giải phương trình:
a,|x|-1/4-1/8(|x|-5/4-a4-2|x|)=|x|-9/2-7/8 f,|2x-x^2-1|=2x-x^2-1 m,|x-2|+|x-3|+|2x-8|=9
b,7x+5/5-x=|3x-5|/2 g,|x^2-3x+3|=3x-x^2-1
c,x-|3x-2|/5=3-2x-5/3 h,|x+1|-|2-x|=0
d,x^2-|x|=6 i,|x|-|x-2|=2
e,|x^2-4|=x^2-4 k,|x-1|+|x-2|=1
Bài 3:
a) \(\dfrac{2x-1}{5}\)-\(\dfrac{x-2}{3}\)
=\(\dfrac{x+7}{15}\)
b) \(\dfrac{x+3}{2}\)-\(\dfrac{x-1}{3}\)
=\(\dfrac{x+5}{6}\)+1
c) \(\dfrac{2\left(x+5\right)}{3}\)+\(\dfrac{x+12}{2}\)
-\(\dfrac{5\left(x-2\right)}{6}\)=\(\dfrac{x}{3}\)+11
d) \(\dfrac{x-4}{5}\)+\(\dfrac{3x-2}{10}\)-x
=\(\dfrac{2x-5}{3}\)-\(\dfrac{7x+2}{6}\)
e) \(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\)
=\(\dfrac{\left(x-4^{ }\right)^2}{6}\)+\(\dfrac{\left(x-2\right)^2}{3}\)
d) \(\dfrac{7x^2-14x-5}{15}\)
=\(\dfrac{\left(2x+1\right)^2}{5}\)-\(\dfrac{\left(x-1\right)^2}{3}\)
e) \(\dfrac{\left(7x+1\right)\left(x-2\right)}{10}\)+\(\dfrac{2}{5}\)
=\(\dfrac{\left(x-2\right)^2}{5}\)+\(\dfrac{\left(x-1\right)\left(x-3\right)}{2}\)