Thực hiện các phép tính sau :
a) \(z=\dfrac{\left(1+2i\right)^2-\left(1-i\right)^3}{\left(3+2i\right)^3-\left(2+i\right)^2}\)
b) \(z=\dfrac{-41+63i}{50}-\dfrac{6i+1}{1-7i}\)
Tìm tập hợp các điểm biểu diễn số phức \(z\) trên mặt phẳng tọa độ thỏa mãn các điều kiện :
a) \(\left|z-i\right|=1\)
b) \(\left|2+z\right|< \left|2-z\right|\)
c) \(2\le\left|z-1+2i\right|< 3\)
Tìm môđun của các số phức sau :
a) \(z_1=-5+\dfrac{1}{2}i\)
b) \(z_2=\sqrt{3}-\sqrt{7}i\)
Trên mặt phẳng toạ độ, hãy tìm tập hợp điểm biểu diễn số phức \(z\) thoả mãn bất đẳng thức :
a) \(\left|z\right|< 2\)
b) \(\left|z-i\right|\le1\)
c) \(\left|z-1-i\right|< 1\)
a) Tính tích phân
\(\int\limits^3_0\dfrac{\sqrt{x+1}+2}{\sqrt{x+1}+3}dx\) (đặt \(t=\sqrt{x+1}\) )
b) Xác định tập hợp các điểm biểu diễn số phức \(z\) trên mặt phẳng tọa độ thỏa mãn điều kiện :
* \(\left|z+1\right|=\left|z-i\right|\)
* \(\left|z\right|^2+3z+3\overline{z}=0\)
a) Tính tích phân \(\int\limits^2_0\sqrt{1+2x^2}xdx\) (đặt \(\sqrt{1+2x^2}=t\) )
b) Tìm môđun của số phức \(z=\dfrac{-8-3i}{1-i}\)
Chứng minh rằng :
a) \(i+i^2+i^3+...+i^{99}+i^{100}=0\)
b) \(\dfrac{\left(\sqrt{2}+i\right)\left(1-i\right)\left(1+i\right)}{i}=2-2\sqrt{2}i\)
Giải các phương trình sau trên tập số phức :
a) \(\left(3+2i\right)z-\left(4+7i\right)=2-5i\)
b) \(\left(7-3i\right)z+\left(2+3i\right)=\left(5-4i\right)z\)
c) \(z^2-2z+13=0\)
d) \(z^4-z^2-6=0\)
Cho a, b, x là những số dương. Đơn giản các biểu thức sau :
a) \(A=\left[\dfrac{2a+\left(ab\right)^{\dfrac{1}{2}}}{3a}\right]^{-1}\left[\dfrac{a^{\dfrac{3}{2}}-b^{\dfrac{3}{2}}}{a-\left(ab\right)^{\dfrac{1}{2}}}-\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\right]\)
b) \(B=\left(\dfrac{\sqrt{a}-\sqrt{x}}{\sqrt{a+x}}-\dfrac{\sqrt{a+x}}{\sqrt{a}+\sqrt{x}}\right)^{-2}-\left(\dfrac{\sqrt{a}-\sqrt{x}}{\sqrt{a+x}}-\dfrac{\sqrt{a+x}}{\sqrt{a}-\sqrt{x}}\right)^{-2}\)
c) \(C=\sqrt{16^{\dfrac{1}{\log_74}}+81^{\dfrac{1}{\log_69}}+15}\)
d) \(D=49^{1-\log_72}+5^{-\log_54}\)