Luyện tập chung trang 28

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tìm hai số u và v, biết:

a) u + v = 15, uv = 56;

b) u2 + v2 = 125, uv = 22.

datcoder
21 tháng 10 2024 lúc 22:55

a) Hai số u và v là nghiệm của phương trình \({x^2} - 15x + 56 = 0\)

Ta có: \(\Delta  = {\left( { - 15} \right)^2} - 4.56 = 1 > 0\)

Suy ra phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{15 + 1}}{2} = 8;{x_2} = \frac{{15 - 1}}{2} = 7\).

Vậy \(u = 8;v = 7\) hoặc \(u = 7;v = 8\).

b) Ta có: \({u^2} + {v^2} = 125 \Rightarrow {\left( {u + v} \right)^2} - 2uv = 125 \Rightarrow {\left( {u + v} \right)^2} = 125 + 2.22 = 169\)

Do đó, \(u + v = 13\) hoặc \(u + v =  - 13\).

Trường hợp 1: \(u + v = 13\):

Hai số u và v là nghiệm của phương trình \({x^2} - 13x + 22 = 0\)

Ta có: \(\Delta  = {\left( { - 13} \right)^2} - 4.22 =  81 > 0\).

Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{13 +\sqrt{81}}{2} = 11\) và \(x_2 = \frac{13 - \sqrt{81}}{2} = 2\)

Trường hợp 2: \(u + v =  - 13\):

Hai số u và v là nghiệm của phương trình \({x^2} + 13x + 22 = 0\)

Ta có: \(\Delta  = {13^2} - 4.22 =  81 > 0\). 

Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{-13 +\sqrt{81}}{2} = -2\) và \(x_2 = \frac{-13 - \sqrt{81}}{2} = -11\)

Vậy \((u,v) \in \left\{ (-2; -11); (-11;-2); (2; 11); (11;2) \right\} \) thỏa mãn \({u^2} + {v^2} = 125,uv = 22\).