Bài 1: Nguyên hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Ta có \(\left(\dfrac{x^3}{3}\right)'=x^2,\left(x^2\right)'=2x\) và \(\left(\dfrac{x^3}{3}+x^2\right)'=x^2+2x\).

a) Tìm \(\int\left(x^2+2x\right)dx\).

b) Tìm \(\int\left(x^2+2x\right)dx\).

c) Có nhận xét gì về \(\int\left(x^2+2x\right)dx\) và \(\int x^2dx+\int2xdx\)?

datcoder
29 tháng 10 lúc 22:53

a) Do \(\left( {\frac{{{x^3}}}{3}} \right)' = {x^2}\) nên \(\int {{x^2}dx}  = \frac{{{x^3}}}{3} + {C_1}\)

Do \(\left( {{x^2}} \right)' = 2x\) nên \(\int {2xdx}  = {x^2} + {C_2}\)

Suy ra \(\int {{x^2}dx}  + \int {2xdx}  = \frac{{{x^3}}}{3} + {x^2} + {C_1} + {C_2}\)

b) Do \(\left( {\frac{{{x^3}}}{3} + {x^2}} \right)' = {x^2} + 2x\) nên \(\int {\left( {{x^2} + 2x} \right)dx}  = \frac{{{x^3}}}{3} + {x^2} + C\)

c) Ta thấy rằng \(\int {{x^2}dx}  + \int {2xdx} \) và \(\int {\left( {{x^2} + 2x} \right)dx} \) đều cùng có dạng \(\frac{{{x^3}}}{3} + {x^2} + C\), với \(C\) là một hằng số. Do đó \(\int {{x^2}dx}  + \int {2xdx}  = \int {\left( {{x^2} + 2x} \right)dx} \).